

Decentralized Hydrogen Production from Woody Biomass via Fixed-Bed Gasification

V. Gubin¹, A. Bartik¹, T. Hejze², T. Reichmann², S. Zheng², F. Benedikt¹, H. Hofbauer¹, S. Müller¹

¹ TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Getreidemarkt 9/166, 1060 Vienna, Austria ² GLOCK Technology GmbH, Gaston-Glock-Park 1, 9170 Ferlach, Austria

Introduction

Sustainable fuels, including solid, liquid, and gaseous bioenergy, hydrogen (H₂), and hydrogen-based fuels, are required to reduce greenhouse gas emissions [1]. In the Hydrogen Strategy for Austria [2], water electrolysis and biomass gasification are pointed out as "especially relevant" pathways for the commercial production of renewable H_2 .

A 100 kW_{H2} demonstration plant (BioH₂Modul) has been built to provide high-purity hydrogen from wood chips for a proton exchange membrane fuel cell tractor (FCTRAC).

Concept & Methodology

- > Decentralized production of 100 kW high-purity H₂ in \ge 3.7 quality (ISO 14687:2019) from wood chips by the BioH₂Modul
- > Process chain BioH₂Modul: fixed-bed gasifier (1), water-gas shift unit (2), rapeseed methyl ester scrubber (3), activated carbon adsorption (4), compression unit (5), pressure swing adsorption (6), and hydrogen refueling station (7) > Fueling of the FCTRAC with 700 bar H₂ by the H₂ refueling station

Isometric view of BioH₂Modul (back)

CHP plant		
Parameter	Unit	Value
Biomass input	kW _{th}	218
Electric power	kW _{el}	50
Thermal power	kW _{th}	110
BioH ₂ Modul		
Parameter	Unit	Value

arameter	Unit	Value
l ₂ output	kg h⁻¹	3
	kW _{th}	100

FCTRAC

Parameter	Unit	Value
H ₂ storage capacity	kg	12.4
Net electric output	k\\/	100

> Integration of the BioH₂Modul into an existing energy center of Glock Ecoenergy in Carinthia (Austria)

- Heat & power can be produced by combined heat & power (CHP) plants by coupling the gasifier with the internal combustion engine (ICE) in months with high heat demand
- High-purity H₂ can be produced by coupling the gasifier with the BioH₂Modul in months with low heat demand

Results & Conclusion

- > Accompanying test runs in pilot-scale proved the technical feasibility of high-purity H₂ production from woody biomass
- Achieved H₂ purity was found to be higher than 99.97 vol.-% on pilot-scale
- **Cold commissioning** of the **BioH**₂**Modul** has already been **completed**
- \succ Techno-economic analysis showed that flexible H₂, electricity and heat production within a multi-product plant is economically conceivable with current Austrian H₂ selling prices [4]

FCTRAC

Outlook

- > **Demonstration** of a **whole value chain** for decentralized H₂ production and utilization will be carried out in mid-2024
- > Optimization objectives may be
 - aiming for **below-zero emission H**₂ production by deploying CO₂ removal technologies
 - flexible H₂, electricity and heat production

[1] IEA, World Energy Outlook 2022, IEA, Paris (2022). https://www.iea.org/reports/world-energy-outlook-2022 [accessed 9 August 2023].

[2] Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation and Technology, Hydrogen Strategy for Austria - Executive Summary, Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation and Technology, Vienna (2022). https://www.bmk.gv.at/themen/energie/energie/energieversorgung/wasserstoff/strategie.html [accessed 14 August 2023]. [3] DBI, Broschüre Gasanwendung, DBI (2019). https://www.dbi-gruppe.de/files/PDFs/Flyer_Broschuere/81_Gasanwendung_FY_Monitoring_2014.pdf [accessed 25 November 2019] [4] V. Gubin, F. Benedikt, F. Thelen, M. Hammerschmid, T. Popov, S. Müller, H. Hofbauer, Hydrogen Production from Woody Biomass Gasification: A Techno-Economic Analysis, In: Biofuels, Bioproducts & Biorefining [accepted for publication on 17 May 2024].

Acknowledgement: This work was carried out within the frame of the project "FCTRAC", which is supported with funds from the Climate and Energy Fund and implemented in line with the "Zero Emission" Mobility" program.

Contact: <u>veronica.gubin@tuwien.ac.at</u>

6th European Gas Technology Conference, Hamburg, Germany, 18th – 19th June 2024