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Working Principle
• Blended hydrogen is fed at low pressure to the anode.

• The hydrogen is transported through the flow field channels to the gas diffusion
layer (GDL).

• The GDL enables the diffusion of hydrogen molecules to the catalyst layer (CL).

• In the CL, hydrogen splits into two atoms and oxidizes to protons (H+) and
electrons (e-).

• The protons diffuse over the membrane (PEM) and are reduced on the cathode
side at high pressure.[2][3]

Introduction
• Hydrogen storage and transportation currently involve energy-intensive and

costly reprocessing methods.

• These methods require final reconversion of the chemical carrier for use in end-
use applications, such as fuel cells.

• A potentially more sustainable and cost-effective solution is blending green
hydrogen into existing natural gas pipelines without repurposing capability. [1]

• The novel electrochemical hydrogen separator and compressor (EHSC) serves as
a downstream deblending technology.
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Requirements

Technology Compatibility Chart

EHSC PSA Cryogenic Separation Membrane Separation

High hydrogen purity

99,97% [5]

(ISO 14687:2019-D) 

– 99,999% [6]

Up to 99,999% [7] 90% [7]- 99,8% [8] Up to 99,995%  [7]

High hydrogen 

recovery
Up to 95 mol% [7] 80-90% [7] 80-90% [7] 70% [7]-99% [7]

Flexible feed 

hydrogen 

concentrations 

4% [2] to 80% [5] 40% [8] -90% [7] 15 - 80 vol% [8] >25% [8]

Low energy 

consumption 

3,5 – 12,5 kWh/ 

kgH2
[5]

Coupled with 

mechanical 

compression 8 – 29 

kWh/kgH2
[5]

2,01 kWh/kgH2
[9]

Dependant on 

membrane material 

Compatible with 

impurities (e.g., CO, 

CO2, CH4, and H2O)

Further research on 

catalyst inhibition 

by CO2 
[10]

Impurities are 

efficiently adsorbed [8]

CO2 and water 

provoke solidification 

and equipment 

damage [9]

Mature technology on 

CO2, CH4, N2 and light 

hydrocarbons separation 
[9]

Single-step operation

Purifies and 

compresses 

hydrogen up to 875 

bar [11]

Requires an 

additional 

compressor for the 

separated natural gas

Feed gas requires 

pretreatment to 

reduce water content 

and CO2

concentration[9]

Requires an additional 

compressor for the 

purified hydrogen

Conclusions and outlook

The EHSC offers high-purity, pressurized hydrogen with significantly lower energy 
consumption than the PSA technology.

Hydrogen purities of up to 99,97% (ISO 14687:2019 – Fuel Cell quality) 
after H2/NG separation can be achieved.

An optimized low-temperature EHSC stack is currently under
development at TU Wien for the separation of H2/NG mixtures. 

The effect of the operational parameters (relative humidity, 
temperature, and gas pressure), components material, and 
stack design will be evaluated.  

The PEM-based electrochemical system will operate at 80°C 
and pressure differences of up to 10 bar. 
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Pipeline transmission is recognized as the most cost-effective solution for
transporting large quantities of hydrogen over long distances [4]. In Europe, gas
networks can admit hydrogen admixtures of 10vol% without requiring further
modifications in the end-use infrastructure. However, certain industries are
sensitive to the gas composition, requiring highly pure hydrogen concentrations [5].
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