

SUSTAINABLE GAS TECHNOLOGY

Greenlab skive P2X

Test Centre for Hydrogen Technology

GERG 60th Anniversary Conference Hydrogen 3rd December 2021

Asger Myken, Danish Gas Technology Centre, amy@dgc.dk

Greenlab skive P2X

- 2020-2024
- Demonstration of production of electrofuels etc.
- Establishment of H2 distribution grid
- DGC's role
 - Safety and authority process related to H2 infrastructure
 - H2 metering and analysis
- EUR 10.7m financial support from the Danish Energy Agency

Project participants:

Greenlab A/S, Eurowind Energy, Green Hydrogen Systems, Norlys Holding, RE:Integrate, Energinet, DGC, Everfuel Europe, E.on Danmark, Technical University of Denmark and EA Energianalyse

Test Centre for Hydrogen Technology

- A collaboration between Danish Gas Technology Centre and FORCE Technology
- Supported by EUDP Green Labs DK
- Main objective:

To develop test facilities and knowledge in order to support and facilitate the development of hydrogen technologies so hydrogen can deliver its full potential in an integrated energy system.

Hydrogen Technology Test Centre services

- Material and component testing
- Hydrogen purity and quality testing
- Measurement of emissions from H2 consuming equipment and exhaust gases from energy consumption and chemical processes
- Efficiency and safety in energy systems
- Metrological services
- On-site inspection services onshore and offshore
- Modeling and calculation

Testcenter for brintteknologi

Plans for DGC laboratory services for Hydrogen Technology Test Centre

DGC will further develop the provided services for the areas of:

- Hydrogen purity analysis
- Leakage measurement
- Extension of laboratory facilities to further include performance test and development of different hydrogen technologies.

Both stationary and mobile solutions will be considered, and the final solutions and timelines will reflect demands from the industry and the technical development.

SUSTAINABLE GAS TECHNOLOGY

Hydrogen purity according to **ISO 14687 specifications** grade D - full package primo 2022

ISO 14687 Grade	D	E, Cat. 3	В	А
	PEM, road vehicles	PEM, stationary	industrial fuel	combustion
Total non-hydrogen gases	300 ppm	0,1%	0,1%	2%
Nitrogen + argon + helium	300 ppm	0,1%	-	-
Water + oxygen + nitrogen + argon	-	-	-	1,9 %
Methane	100 ppm	100 ppm	-	-
Non-methane hydrocarbons (C1)	2 ppm	2 ppm	non-condensing	100 ppm
Oxygen	5 ppm	50 ppm	100 ppm	-
Water	5 ppm	non-condensing	non-condensing	non-condensing
Carbon dioxide	2 ppm	2 ppm	-	-
Carbon monoxide	0,2 ppm	0,2 ppm	-	1 ppm
Carbon monoxide + formaldehyde + formic acid	0,2 ppm	0,2 ppm	-	-
Ammonia	0,1 ppm	0,1 ppm	-	-
Halogenated compounds	0,05 ppm	0,05 ppm	-	-
Total sulfur compounds (S1)	0,004 ppm	0,004 ppm	10 ppm	2 ppm
Mercury	-	-	0,004 ppm	-
Particles	1 mg/kg	1 mg/kg; < 75 μm	no damage	no damage

Danish Gas Technology Centre

Detection/quantification of leakages – expected in operation during 2022 and 2023

High Flow Sampler (for quantification of single leakages)
Mobile detection of leakages from pipelines and equipment
Gas test detector for manual detection of leakages

- DGC has different equipment for identification and quantification of methane leakages.
- DGC plans to extend the methods and equipment to include hydrogen leakages due to safety as well as environmental concerns
- For hydrogen¹, an estimate for global warming potential is found to be in the area of

 $GWP_{Hydrogen} = 4-7$

In comparison, ICCP estimates a 100-year value for methane² of

 $GWP_{Methane} = 28$

FORCE Technology will further develop the provided services for test of materials and components

Hydrogen compatibility and sensibility

- Hydrogen in materials as function of different parameters
- Material gualification
- Test of electrodes in representative environments

Hydrogen permeability

- Test of hydrogen diffusion for different materials
- Test of packing and sealing materials
- Test of coatings

Fracture mechanical testing

- Static and dynamic tests
- **ASME B31.12**

Dynamic fracture mechanical test

Static fracture mechanical test

Specialized autoclave

Hydrogen diffusion evident in liquid

Mobility, flexibility, safety

Danish Gas Technology Centre

SUSTAINABLE GAS TECHNOLOGY

Thank you for your attention

9