

Site level quantification of methane emissions

PHASE II.A: TECHNOLOGY BENCHMARK FOR SITE LEVEL METHANE EMISSIONS QUANTIFICATION PROJECT

TANIA MEIXÚS FERNÁNDEZ

Phase II.A: GERG 'Technology Benchmark for site level methane emissions quantification GERG

ADVISORY BOARD to validate the scope and test program and to check the results Internationally recognized experts from Authorities and Institutions, Academia, Industry and Civil Society

Partners of the project

Phase II.A: GERG 'Technology Benchmark for site level methane emissions quantificatio GERG

WP1 Detailed definition and preparation of tests

✓ Inerted

- Isolated (no other methane sources nearby)
- ✓ Flat field, can be easily surrounded by car
- ✓ No strong winds normally
- ✓ Premises available

Location - hybernated (inerted) Compressor Station in Spain

Phase II.A: GERG 'Technology Benchmark for site level methane emissions quantification GERG

Tests organization / coordination

 Tests organization managed by a collaborative team: 	enagas B U R E A U VERITAS	
Releases plan determined by a collaborative team:	enagas + Ó LSCE	
 Field coordination managed by Bureau Veritas: 	B U R E A U VERITAS	
 Independent analysis of data and results 	LSCE	

Heights were defined to represent fugitives and vents average heights in midstream sites

	CRF	location	height	type of exit
	node 1	vent stack	28	open end
WP2	node 2	structure1	9	open end
Perform the tests	node 3	structure1	4	ring shaped
	node 4	structure 2	1,5	linear
	node 5	structure 2	1,5	open end

GERG

- Flow rates of methane varying from 0.01 kg/h to 50 kg/h (randomized releases)
- Heights were defined to represent fugitives and vents average heights in midstream sites

	CRF	location	height	type of exit
	node 1	vent stack	28	open end
WP2	node 2	structure1	9	open end
Perform the tests	node 3	structure1	4	ring shaped
	node 4	structure 2	1,5	linear
	node 5	structure 2	1,5	open end

Node 1

- Flow rates of methane varying from 0.01 kg/h to 50 kg/h (randomized releases)
- Heights were defined to represent fugitives and vents average heights in midstream sites

	CRF	location	height	type of exit
	node 1	vent stack	28	open end
WP2	node 2	structure1	9	open end
Perform the tests	node 3	structure1	4	ring shaped
	node 4	structure 2	1,5	linear
	node 5	structure 2	1,5	open end

<u>Node 2</u>

- Flow rates of methane varying from 0.01 kg/h to 50 kg/h (randomized releases)
- Heights were defined to represent fugitives and vents average heights in midstream sites

	CRF	location	height	type of exit
	node 1	vent stack	28	open end
WP2	node 2	structure1	9	open end
Perform the tests	node 3	structure1	4	ring shaped
	node 4	structure 2	1,5	linear
	node 5	structure 2	1,5	open end
				No

- Flow rates of methane varying from 0.01 kg/h to 50 kg/h (randomized releases)
- Heights were defined to represent fugitives and vents average heights in midstream sites

	CRF	location	height	type of exit
	node 1	vent stack	28	open end
WP2	node 2	structure1	9	open end
Perform the tests	node 3	structure1	4	ring shaped
i chomi the tests	node 4	structure 2	1,5	linear
	node 5	structure 2	1,5	open end

Node 4

- Flow rates of methane varying from 0.01 kg/h to 50 kg/h (randomized releases)
- Heights were defined to represent fugitives and vents average heights in midstream sites

	CRF	location	height	type of exit
	node 1	vent stack	28	open end
WP2	node 2	structure1	9	open end
Perform the tests	node 3	structure1	4	ring shaped
	node 4	structure 2	1,5	linear
	node 5	structure 2	1,5	open end No

Technologies

12 technologies were tested!

- 9 Top-down / Site-level
- 3 Bottom-up

	ABB Hover Guard		
e Ve	ABB Mobile Guard		
e- 0	Aeromon		
Sit	DGC Tracer Gas		
	Dial NPL		
MC	SeekOps		
-D0	CHARM		
op	Mirico		
F	Sensia		
d	FLIR		
n-mo	OPGAL		
Bott	HFS Prototype		

ABB Hover guard

- Off-Axis Integrated Cavity Output Spectroscopy (OA–ICOS) technology
- Mounted on a drone
- With GPS and anemometer

ABB Mobile guard

- Off-Axis Integrated Cavity Output Spectroscopy (OA–ICOS) technology
- Mounted on a car
- With GPS and anemometer

Aeromon

- NDIR (Non-dispersive infrared), MOS (Metal-oxide semiconductor) and laser spectroscopy
- Mounted on a drone

DGC tracer gas

- Tracer gas technology (Acetylene)
- Cavity Ring Absorption Spectroscopy for measurement

SeekOps

- Turnable diode laser absorption spectrometer sensor (SeekIR)
- Mounted on a drone

DIAL NPL

- LiDAR DIAL sensor
- Mounted on a truck
- 3D picture

CHARM

- LIDAR DIAL
- Mounted on a helicopter
- High travelling speed
- Photographic documentation

MIRICO – ORION CH4

- Laser Dispersion Spectroscopy (LDS) for concentration measurement
- 10 retroflectors were located across the site to return the laser beams to the detector
- Not affected by climate adversities

SENSIA

- Caroline FYL
 - Uncooled LWIR detector
 - OGI analytics for mass flow quantification
- Mileva 33F
 - Cooled MWIR detector

FLIR

- FLIR OGI QL320
 - Handheld device
 - Temperature assessment
 - Colorized video

OPGAL

- EyeCGas 2.0 OGI
 - Handheld device
 - Temperature assessment

HFS Prototype / RICE

• Pneumatic Venturi Prototype (low TRL)

Full week tests plan

	Monday	Tuesday	Wednesday	Thursday	Friday
7:00	Arrival	Arrival + Time for preparation	Arrival + Time for preparation	Arrival + Time for preparation	Arrival + Time for preparation
9:00	Safety briefing Organisational briefing Antigen tests	Experiment 3	Experiment 7	Experiment 11	Experiment 15
11:00	Installation time for: CRF All technologies	Experiment 4	Experiment 8	Experiment 12	Experiment 16
12:00	Lunch break	Lunch break LSCE instructions for reporting	Lunch break	Lunch break	Lunch break Debriefing
14:00	Experiment 1	Experiment 5	Experiment 9	Experiment 13	Experiment 17
16:00	Experiment 2	Experiment 6	Experiment 10	Experiment 14	Desisntallation
17:00 18:00	Calibration of Mini CRF				

Phase II.A: GERG 'Technology Benchmark for site level methane emissions quantification'

- → Independent report Before end of December (only for partners and key stakeholders)
- → Peer-reviewed article Q1 2022

Phase II.A: GERG 'Technology Benchmark for site level methane emissions quantification'

- **Phase II. B** to be kicked-off probably in **February 2022.** Further work is needed to determine how these technologies can be applied to reconcile bottom-up/source-level quantification.
- Select technologies based on the findings of the study of the state of the art and the results of phase II.A

Bottom-up

SIS

Top-down Site-level

GERG

Reconciliation to be done with external support

THANK YOU VERY MUCH!

TOP-DOWN METHODOLOGIES: SITE LEVEL QUANTIFICATION OF METHANE EMISSIONS

PHASE II.A: TECHNOLOGY BENCHMARK FOR SITE LEVEL METHANE EMISSIONS QUANTIFICATION PROJECT