

Phase 1 – State of the Art

GERG - Technology Benchmark for site level methane emissions quantification

Introduction Why this project ?

New challenges about measurement and estimations of methane emissions

- Bottom-up methodologies are commonly used by gas operators.
- Ensuring the reliability of methane emissions is very important for gas operators.
- Increasing interest for so-called "Top-Down" methodologies shared by multiple stakeholders : nongovernmental organization, technologies providers, academic researchers, gas operators...
- The level 5 of the reporting framework OGMP 2.0 includes Top-Down methodologies for global quantification of sites emissions.

Bottom-up

Source level

Pont wise measurement or column integrated concentration measurement.

Top - Down

Complementary measurements Anemometers, GPS, etc.

concentration measurement into a leak rate.

Algorithm To convert the

Site level

Introduction

Why this project ?

In this context, a project on methodologies for methane emissions quantification was launched in the GERG association (18 members).

Classification GRTgaz : Public [] Interne [X] Restreint [] Secret []

Presentation of the project

Scope of work

Main objective : Provide a state of the art of different methodologies for Methane Emissions quantification and define the next steps for methodologies implementation.

WP1 - Satellites	 Report and peer review (1) Presentation 	1
WP2 – Top-Down methodologies	 Report and peer review (1) Presentation 	
WP3 – Methodologies for distribution	 Report and peer review (1) Presentation 	
WP4 – Definition of next steps	 Organisation of two workshops Proposal report 	

E EUROPEAN GA

WP1 – State of the art of satellites

A promising and quickly evolving new top-down approach in which detection of methane emissions around the globe can be made monthly, daily or several times a day, is based on satellite observations.

Conclusions :

- Currently satellites are not an independent methodology : they rely on a set of data coming from other instruments/methodologies.
- They are used to spot "super emiters" (~t/h). Current detection limit : 100 kg/h
- Some satellites as GHGsat have enough spatial resolution (30m) to assign the source of plumes.
- Challenges in retrieval algorithms

WP2 – Top Down

This work package established a state-of-the-art evaluation of the current mobile platforms implementing top-down methodologies with in-situ atmospheric CH_4 measurements.

Conclusions :

- Very broad panorama in terms of techniques, degree of Technology Readiness Level (TRL), and typology of actors.
- There is a lack of more comprehensive reliable data and independent performance assessment campaigns.
- The existing measurement campaigns have showed limitation for accurate quantification.

ExonMobil

< 1 kg/h

WP3 – Methodologies for distribution network

The study focused on detection with mobile systems and bottom-up methodologies for in situ quantification for gas distribution networks (buried pipelines).

Conclusions :

- Mobile survey : Good to spot supper emitters rapidly, but with limited accuracy.
- Dominance of a small number of large leaks on methane emissions : opportunity for a cost-effective way to reduce methane emissions
- Direct survey : The existing measurement campaigns have shown the suitability of suction method (although time consuming).

Leakage Gas Flow from Damaged Pipeline Unimpeded and with Suction (Schematic)

Direct campaigns : direct flux measurements

kiwa

DVGW

🛩 nedgia

gti.

WP4 – Definition of next steps

Based on the findings of the previous work packages, the project team identified additional research needed to enable the effective use of top-down technologies and proposed detailed next steps.

Objective

- Selection of methodologies of interests based on the state of the art from WP2 and WP3
- Gap analysis about uncertainties and performance evaluation,
- Expression of needs of members and definition of objectives for next steps,
- Use cases definition and description of experiments

Conclusions

- Need of tests to quantify the concentration accuracy and uncertainties of such methodologies
- The project produced a proposal to progress on Top-Down methodologies, based on controlled release tests.
- These conclusions led to the launch of the next phase of the project.

Thank you !

Classification GRTgaz : Public [] Interne [X] Restreint [] Secret []