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Preface

The accurate knowledge of the thermodynamic properties of natural gases and other mixtures 
of natural gas components is of indispensable importance for the basic engineering and 
performance of technical processes. The processing, transportation, and storage of natural gas 
requires property calculations for a wide range of mixture compositions and operating 
conditions in the homogeneous gas, liquid, and supercritical regions, and also for vapour-
liquid equilibrium states. These data can advantageously be calculated from equations of 
state. To overcome the weaknesses and limitations of existing equations of state used in the 
natural gas industry, several years ago the Chair of Thermodynamics of the Ruhr-Universität 
Bochum decided to develop a new wide-range equation of state for natural gases and other 
mixtures of a quality that enables the equation to be adopted as a standard international 
reference equation suitable for all natural gas applications where thermodynamic properties 
are required. The work was supported by the DVGW (German Technical and Scientific 
Association on Gas and Water) and European natural gas companies (E.ON Ruhrgas, 
Germany; Enagás, Spain; Gasunie, The Netherlands; Gaz de France, France; Snam Rete Gas, 
Italy; and Statoil, Norway), which are members of GERG (Groupe Européen de Recherches 
Gazières). Based on the new formulation, robust and efficient calculation routines (software) 
were developed in a second project, supported by the European natural gas companies 
mentioned before. The routines allow for “blind” calculations of the thermodynamic 
properties of mixtures at arbitrary conditions. 

This monograph thoroughly presents the new equation of state, adopted by GERG in 2004 
and called GERG-2004 equation of state or GERG-2004 for short. Firstly, a brief introduction 
to existing mixture models with particular focus on the equations of state commonly used in 
the natural gas industry is given, followed by the basic requirements that were defined for the 
new model. Similar to recent developments, the new wide-range formulation is explicit in the 
Helmholtz free energy. The mixture model uses accurate equations of state in the form of 
fundamental equations for each mixture component along with formulations developed for 
binary mixtures that take into account the residual mixture behaviour. Therefore, the pure 
substance equations of state and the general characteristics of the modern approach are 
described. However, the descriptions should be considered as background information and are 
not necessarily required for those who are only interested in the structure of the new equation 
of state. In Chap. 6, an overview of the experimental data used for the development and 
evaluation of the new mixture model is given. The quality and the extent of the available data 
limit the achievable accuracy of the equation. Detailed information on the mathematical 
structure of the new equation of state, its range of validity, the uncertainties in different 
thermodynamic properties, and the development of the binary equations is provided in 
Chap. 7. Moreover, it offers guidelines for the calculation of thermodynamic properties from 
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the new equation of state along with some fundamental principles regarding advanced mixture 
property calculations using second order convergence methods. This includes stability 
analysis, the solution to flash specifications, the calculation of saturation points, and the 
construction of phase envelopes. The quality and predictive power of the new formulation is 
discussed in Chap. 8 by comparisons with experimental data and with results obtained from 
previous mixture models. Finally, recommendations for the potential further extension of the 
new equation of state are given. 

The monograph is written in such a way that the complete numerical information, required for 
the calculation of thermodynamic properties from the new equation of state, such as density, 
enthalpy, entropy, isobaric heat capacity, and fugacity coefficients, is given in Chap. 7. 
However, special algorithms are needed to analyse the phase stability, i.e. to determine 
whether a mixture at the specified conditions is homogeneous or split in two (or more) phases, 
and to be able to perform phase equilibrium calculations. As mentioned above, the procedures 
used for this purpose in this work are also described in Chap. 7. 

The authors are grateful to the members of the GERG Working Group 1.34 and the GERG 
Working Group 1.46 for the financial support of the respective research projects and for their 
very helpful collaboration and their patience. We are also grateful to all of the 
experimentalists who carried out measurements for the equation project, as well as to those 
who provided us with recently measured data prior to their publication or with (older) data 
that are not available in the open literature. Our special thanks go to M. L. Michelsen for 
providing us with the computer codes of algorithms for phase equilibrium calculations and for 
his help in understanding the sophisticated procedures. Moreover, we thank G. Lauermann 
and the Gas Processors Association for providing us with the GPA Thermodynamic Database. 
We wish to express our warmest thanks to D. Lecaplain, J. Kirschbaum, J. Bierwirth, and K. 
Göckeler, who, in different ways, contributed to certain parts of this work. In particular, one 
of us (O. K.) is very grateful to A. Grevé for her assistance in writing this monograph and for 
typing most of the equations of the manuscript. Finally, we thank E. W. Lemmon for carefully 
reading the entire manuscript, for helpful discussions and suggestions, and for improving the 
English style. 

Bochum, April 2007 O. Kunz 
R. Klimeck 
W. Wagner 

M. Jaeschke 
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1 Introduction 

Aside from crude oil and coal, natural gas is one of the most important primary energy 
sources accounting for almost one fourth of the world primary energy consumption [BP 
(2006)]. Due to its longer estimated future availability compared to crude oil, it increasingly 
gains in importance. Although natural gas belongs to the fossil fuels, it is comparatively 
environmentally sound.  

Natural gas is a multi-component mixture of widely varying composition with methane as the 
main constituent and further essential components such as nitrogen, carbon dioxide, ethane, 
propane, and heavier hydrocarbons. Nowadays, natural gas is used for space heating, cooking, 
electric power generation, and as raw material in the chemical industry. Driven by the need to 
satisfy new and more stringent environmental emissions standards as well as for economic 
reasons, natural gas is considered as a clean-burning, alternative fuel for the transportation 
sector. Natural gas vehicles using compressed natural gas (CNG) at pressures p  20 MPa are 
increasing in abundance and popularity. Aside from CNG, some natural gas vehicles are 
fuelled by liquefied natural gas (LNG), and others are bi-fuel vehicles using gasoline or 
natural gas, allowing for more flexibility in fuel choice. Future developments include, for 
example, natural-gas-powered fuel cells for the clean and efficient generation of electricity  
for residential, commercial, industrial, and even transportation settings, and the use of 
natural gas–hydrogen mixtures as an alternative fuel enabling the further reduction of the 
emissions of CO, CO2, NOx, and hydrocarbons of gasoline or natural-gas-powered vehicles 
[Akansu et al. (2004)], representing the next step on the path to an ultimate hydrogen 
economy.  

The accurate knowledge of the thermodynamic properties of natural gases and other mixtures 
of natural gas components is of indispensable importance for the basic engineering and 
performance of technical processes. This requires property calculations for a wide range of 
mixture compositions and operating conditions in the homogeneous gas, liquid, and 
supercritical regions, and also for vapour-liquid equilibrium (VLE) states. These data can 
advantageously be calculated from equations of state. Examples for technical applications 
commonly using equations of state are processing, transportation through pipelines or by 
shipping, and storage of natural gas: 

To meet pipeline quality specifications or for commercial use as a fuel, natural gas in its 
raw form in general needs to be processed ahead of the feed into the gas pipeline system or 
a liquefaction facility. This involves separation of a number of components which are 
either undesirable or have more value on their own than when left in the natural gas. Raw 
natural gas contains varying and comparatively large amounts of ethane, propane, butane, 
and heavier hydrocarbons (natural gasoline), which are known as natural gas liquids 
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(NGL). The separation of these components requires the design of fractionation units, 
where they are removed from the raw gas and further fractionated for individual sale as 
ethane, propane, liquefied petroleum gas (LPG), and other products. Among others, carbon 
dioxide and water are undesirable components and are removed as well.  

Natural gas is transported in gaseous form through pipelines at pressures between 8 MPa 
and 12 MPa. Compressor stations placed periodically along the pipeline ensure that the 
natural gas remains pressurised. In addition, metering stations allow for monitoring and 
managing the natural gas in the pipes. Small differences in methods used to calculate 
volumetric flow rates in large scale metering can introduce large cost uncertainties. To 
match supply and demand, natural gas is injected at pressures up to 30 MPa into 
underground storage facilities, such as depleted gas reservoirs, aquifers, and salt caverns. 

Natural gas deposits are unequally divided over the world. In situations where the 
economics of major gas transmission pipelines are not viable (primarily across oceans), 
natural gas is reduced to about one six-hundredth of its volume by cooling to about 110 K 
at atmospheric pressure, resulting in the condensation of the gas into liquid form, known as 
LNG, thus making it transportable by specialised tanker ships. At the receiving terminal, 
the LNG is pumped into onshore storage tanks and can then be regasified and distributed 
into the pipeline system. State-of-the-art and highly-efficient liquefaction processes use 
mixtures of natural gas components as refrigerants in the pre-cooling, liquefaction, and 
sub-cooling cycles [Knott (2001), Lee et al. (2002), and Berger et al. (2003)]. Thus a 
significant amount of information regarding the thermal and caloric properties of natural 
gases and mixtures of natural gas components is needed for compressor and heat 
exchanger design.

Currently, there are not any equations of state for natural gases that are appropriate for all of 
the exemplified applications and that satisfy the demands concerning the accuracy in the 
description of thermodynamic properties over the entire fluid region. Therefore, several years 
ago the Chair of Thermodynamics of the Ruhr-Universität Bochum decided to develop a new 
wide-range equation of state for natural gases. The research project aimed at developing an 
equation of state that is suitable for all technical applications using natural gases and other 
mixtures consisting of natural gas components. The work was supported by the DVGW 
(German Technical and Scientific Association on Gas and Water) and European natural gas 
companies (E.ON Ruhrgas, Germany; Enagás, Spain; Gasunie, The Netherlands; Gaz de 
France, France; Snam Rete Gas, Italy; and Statoil, Norway), which are members of GERG 
(Groupe Européen de Recherches Gazières). The main purpose of this European research 
project was to develop a thermodynamic property model that is appropriate as an international 
reference equation for all natural gas applications.  

The new equation of state for natural gases and other mixtures developed in this work results 
from the continuation of the preceding study of Klimeck (2000), who established the essential 
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tools required for the development of an accurate and wide ranging equation of state for 
mixtures. Aside from a new class of highly accurate equations of state for the natural gas 
components methane, nitrogen, carbon dioxide, and ethane, representing the main constituents 
of common natural gases, Klimeck (2000) developed a preliminary model for natural gas 
mixtures consisting of up to seven natural gas components to demonstrate the predictive 
capability of the pursued approach. The completely revised, new formulation presented in this 
work removes the limitation of the small number of components available and the physically 
incorrect behaviour in calculated vapour-liquid equilibrium states built unintentionally into 
the preliminary work.  

Similar to recent developments, the new equation of state for natural gases, similar gases, and 
other mixtures is based on a multi-fluid approximation. The mixture model uses accurate 
equations of state in the form of fundamental equations for each mixture component along 
with functions developed for the binary mixtures of the components that take into account the 
residual mixture behaviour. The new formulation enables the calculation of thermal and 
caloric properties for natural gases and other mixtures consisting of the 18 components 
methane, nitrogen, carbon dioxide, ethane, propane, n-butane, isobutane, n-pentane, 
isopentane, n-hexane, n-heptane, n-octane, hydrogen, oxygen, carbon monoxide, water, 
helium, and argon. 

Based on this new mixture model, robust and efficient calculation routines were developed in 
this work, supported by the European natural gas companies mentioned above, enabling the 
“blind” calculation of the thermodynamic properties in the different fluid regions and also 
allowing for extensive VLE calculations for any binary and multi-component mixture of the 
considered components and at arbitrary mixture conditions.  

Briefly, Chap. 2 gives an introduction to existing mixture models and particularly focuses on 
the equations of state commonly used in the natural gas industry. In Chap. 3, the basic 
requirements for the new equation of state are defined. Chapter 4 deals with the equations of 
state used for the components forming the basis of the mixture model developed here. 
Chapter 5 focuses on the general characteristics of mixture models based on multi-fluid 
approximations and summarises some basics of the development of the different binary 
formulations. An overview of the experimental data used for the development and evaluation 
of the new mixture model is given in Chap. 6. Detailed information on the mathematical 
structure of the new equation of state, its range of validity, and the development of the various 
binary equations is provided in Chap. 7. Moreover, it offers guidelines for the calculation of 
thermodynamic properties from the multi-fluid model along with some fundamental 
principles regarding advanced mixture property calculations based on the essentials given in 
Chap. 5. The quality and predictive power of the new formulation is discussed in Chap. 8 by 
comparisons with experimental data and results obtained from previous equations of state. 
Chapter 9 gives recommendations for the potential further extension of the property model.
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2 Previous Equations of State for Mixtures 

This chapter gives a brief introduction to existing mixture models. Of particular interest are 
the equations of state which are commonly used in the natural gas industry.

In the literature, a large number of mixture models is available. The models differ in both 
structure and accuracy. One group of models describes the behaviour of mixtures through the 
use of excess properties. For instance, many models have been developed for the excess 
Gibbs free energy g T p xE( , , ) [e.g. van Laar (1910), Gmehling et al. (1993)] as well as for the 
excess Helmholtz free energy a T p xE( , , ) [e.g. Huron and Vidal (1979), Heidemann (1996)]. 
To use these models, the pure components as well as the mixture itself must be in the same 
state at a given temperature and pressure [Orbey and Sandler (1995)]. As a result of this 
precondition, these models are not suitable for most engineering problems when taking into 
account the involved components and the covered fluid regions.

The thermodynamic properties of mixtures can be calculated in a very convenient way from 
equations of state1. Most of these equations are explicit in pressure, as for example well-
established cubic equations of state. Cubic equations are still widely used in many technical 
applications due to their simple mathematical structure. For technical applications with high 
demands on the accuracy of the calculated mixture properties, these equations show major 
weaknesses with respect to the representation of thermal properties in the liquid phase and the 
description of caloric properties [e.g. Soave (1995), Klimeck et al. (1996)].

Empirical equations of state, such as the equations of Bender (1973) and of Starling (1973), 
yield an improved description of the properties of mixtures especially in the homogeneous 
region. These models are explicit in pressure as well. Bender (1973) used mixing rules to 
describe the composition dependence of the coefficients and the temperature-dependent 
functions of the equation of state. Starling (1973) used mixing rules for each coefficient of the 
equation of state.

The work of Leland et al. [Leach et al. (1968), Leland and Chapelear (1968)] laid the basis 
for the application of extended corresponding states models to mixtures. Based on this work, 
Ely (1990) developed the exact shape factor concept. Later, Marrucho et al. (1994) presented 
an improved extended corresponding states theory for natural gas mixtures. Recently, Trusler 
et al. [Estela-Uribe and Trusler (2003), Estela-Uribe et al. (2004)] reported two separate 
extended corresponding states models for natural gases and similar mixtures. One was a wide 
ranging equation and the other was limited to the custody transfer region. The wide ranging 
model yields an accuracy which is, on average, similar to or even slightly better than other 
commonly used equations for natural gases.

1  For instance, equations of state do not rely on activity coefficient concepts.  



5

Recent developments, including the mixture model developed in this work, are based on 
multi-fluid approximations [Tillner-Roth (1993), Lemmon (1996)]. These models use 
equations of state in the form of fundamental equations for each mixture component along 
with further correlation equations to take into account the residual mixture behaviour. The 
equations are explicit in the Helmholtz free energy. The basic principles for the development 
of these mixture models are strongly related to the development of empirical equations of 
state for pure substances. The models enable the accurate description of the thermodynamic 
properties of mixtures in the extended fluid region for wide ranges of temperature, pressure, 
and composition. Examples that demonstrate the capabilities of mixture models based on 
multi-fluid approximations were shown by Tillner-Roth and Friend (1998) for the binary 
system water–ammonia, whereas Lemmon and Jacobsen (1999) describe multi-component 
mixtures of polar and nonpolar substances including natural gas components. A model for the 
properties of dry air and similar mixtures was developed by Lemmon et al. (2000). Recent 
developments were reported for mixtures of hydrocarbon refrigerants [Miyamoto and 
Watanabe (2003)] and for hydrofluorocarbon refrigerant mixtures [Lemmon and Jacobsen 
(2004)]. The new equation of state for natural gases and other mixtures developed in this 
work results from the continuation of the preceding work of Klimeck (2000), who established 
the essential tools required for the development of an accurate and wide ranging mixture 
model based on a multi-fluid approximation; for further details see Chaps. 5 and 7. 

2.1 Examples of Equations of State Commonly Applied in the 
Natural Gas Industry 

Many different types of equations of state are applied in the natural gas industry. The use of a 
certain equation depends on the fluid region where the calculation of the thermodynamic 
properties is required. For pipeline applications, which mainly deal with the gas phase 
properties of natural gases, several equations of comparatively high accuracy exist. For 
certain applications, simplified equations were developed, e.g. the SGERG equation of 
Jaeschke and Humphreys (1992). These equations use the mole fractions of specific natural 
gas components (e.g. nitrogen and carbon dioxide) in combination with physical properties, 
such as the relative density and the superior calorific value, as input variables instead of the 
complete molar composition analysis. In the liquid phase and for phase equilibrium 
calculations, cubic equations of state [e.g. Peng and Robinson (1976)], which show poor 
accuracy in the description of many thermodynamic properties (see Sec. 2.1.2), are commonly 
used. A more accurate description of, for example, the p T relation in the liquid phase, is 
achieved by equations with very limited ranges of validity for temperature, pressure and 
composition [e.g. McCarty (1982)]. They are typically only applicable in the subcritical 
range. As a result of the use of individual equations for different fluid regions, there are 

2   Previous Equations of State for Mixtures 
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inconsistencies in calculations when moving from one region to another and when more than 
one phase is involved, i.e. for phase equilibrium calculations. 

As most of the standard natural gas applications, such as gas transmission and storage, are 
located in the “classical” natural gas region, i.e. the gas phase at temperatures from 250 K to 
350 K and pressures up to 30 MPa, this range is of main interest for the calculation of 
thermodynamic properties. The internationally accepted standard for the calculation of 
compression factor in this region is, according to ISO 12213 “Natural Gas – Calculation of 
Compression Factor” [ISO (1997)], the AGA8-DC92 equation of state of Starling and 
Savidge (1992). 

2.1.1 The AGA8-DC92 Equation of State of Starling and Savidge (1992) 

The range of validity of the AGA8-DC92 equation of state is limited to the gas phase. 
Basically, this equation of state enables the calculation of thermodynamic properties of 
natural gases consisting of up to 21 components. The equation for the residual part of the 
reduced Helmholtz free energy is given by 
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where the second virial coefficient B is calculated by means of binary parameters for the 21 
considered components according to 
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with K3  and T Tr , where Tr  = 1 K. The size parameter K depends on the mixture 
composition and is calculated by using binary parameters. The coefficients Cn  and Bnij  also 
depend on the composition and contain further binary parameters which take into account 
different physical properties, as for example dipole and quadrupole characteristics, of the 
considered components. The structure of the AGA8-DC92 equation of state is based on a total 
of 58 polynomial terms and polynomial terms in combination with exponential functions 
which require 860 different parameters.  

The AGA8-DC92 equation developed by Starling and Savidge (1992) was originally designed 
as a thermal equation of state explicit in compression factor. The range of validity covers the 
gas phase at temperatures 143 K T  673 K and pressures up to 280 MPa. Due to the data 
situation, a well-founded estimation of the uncertainty in the description of thermal properties 
of natural gases is only feasible in the temperature range 250 K T  350 K at pressures up 
to 30 MPa. Detailed investigations concerning the uncertainty of the AGA8-DC92 equation in 
the description of thermal properties have been published by numerous authors [e.g. ISO 
(1997) and Jaeschke and Schley (1996)].
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Within the framework of the research project “Fundamental Equation for Calorific Properties 
of Natural Gases” Klimeck et al. (1996) investigated the description of caloric properties, 
such as the speed of sound, the isobaric heat capacity and enthalpy differences. Data 
calculated from different equations of state were compared with experimental data for the 
pure natural gas components, their binary mixtures, and natural gases. In order to enable these 
calculations, the AGA8-DC92 equation was combined with equations of Jaeschke and Schley 
(1995) for the isobaric heat capacity in the ideal gas state of the pure components.  

The results of the investigations mentioned above can be summarised as follows: 

The uncertainty in the description of the p T relation of typical natural gases of pipeline 
quality2 amounts to 0.1% in density. This uncertainty is achieved for temperatures ranging 
from 290 K to 350 K at pressures up to 30 MPa. 

For the calculation of caloric properties at temperatures above 270 K the uncertainty in the 
speed of sound amounts to approximately 0.2%. The uncertainty in the isobaric heat 
capacity and isobaric enthalpy differences is about 1%. 

Nevertheless, the investigations revealed several shortcomings of the AGA8-DC92 equation 
of state, which is currently the internationally accepted standard for the gas phase: 

The development of the AGA8-DC92 equation of state was based mainly on mixture data 
at temperatures above 270 K. Comparisons with the limited density data for natural gas 
mixtures in the temperature range from 250 K to 270 K indicate a higher uncertainty in the 
prediction of thermal properties in this region. Moreover, at higher temperatures up to 
290 K, the uncertainty of 0 1%.  is restricted to pressures less than 12 MPa.  

For natural gases containing higher fractions of nitrogen, carbon dioxide, ethane, or 
heavier alkanes, larger uncertainties have to be taken into account for the calculation of 
thermal properties from the AGA8-DC92 equation of state in the lower temperature range. 

Significant deviations between calculated and measured caloric properties occur at 
temperatures below 270 K even for typical natural gases of pipeline quality. For example, 
speed of sound deviations increase at higher pressures and reach a value of about 1% at a 
pressure of 20 MPa.

An increase of the uncertainty in caloric properties for natural gases containing higher 
fractions of heavier alkanes such as propane and the butanes has to be taken into account 
even at higher temperatures. This shortage of the AGA8-DC92 equation becomes even 
more evident for increasing pressures while the temperature decreases.  

2  In this work, the expression “pipeline quality” refers to the definition of the international standard 
ISO 12213 “Natural Gas – Calculation of Compression Factor” [ISO (1997)]. According to that, 
natural gases of pipeline quality are processed natural gases of a composition which is typical for 
sales gas. 

2.1   Examples of Equations of State ... Applied in the Natural Gas Industry 
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2.1.2 The Cubic Equation of State of Peng and Robinson (1976) 

Due to their simple mathematical structure, cubic equations of state along with their huge 
amount of existing modifications are still commonly used for technical applications. These 
equations are explicit in pressure, but can be transformed to an equation for the residual 
Helmholtz free energy ar . The dimensionless form of the residual Helmholtz free energy 
derived from the well-known cubic equation of state of Peng and Robinson (1976) reads:

a
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1 2 1
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The equation contains two parameters. The parameter b depends only on the mixture 
composition, whereas the parameter a additionally depends on temperature. Basically, these 
parameters are calculated by means of different mixing rules using binary interaction 
parameters; see Peng and Robinson (1976) for further details. 

The investigations of Klimeck et al. (1996) (see Sec. 2.1.1) on the suitability of the Peng-
Robinson equation of state for use in technical applications which require high accuracy 
predictions of the properties of natural gases quickly revealed serious deficiencies. Many 
cubic equations of state have these weaknesses in common due to their structure: 

Major shortcomings already occur for the description of the p T relation of pure methane 
at temperatures and pressures typically encountered in standard applications related to 
transmission and distribution of pipeline quality gases. For instance, density values 
calculated from the Peng-Robinson equation deviate from the reference equation of state of 
Setzmann and Wagner (1991) by up to +5% at pressures below 30 MPa.  

Comparisons of calculated values for the speed of sound show deviations of more than 
10% in the same temperature and pressure ranges. 

A similar insufficient behaviour is observed in the calculation of properties in the liquid 
phase. Calculated saturated liquid densities deviate from experimental data of natural gases 
and state-of-the-art measurements of pure substances by up to 15%. This incorrect 
calculation in the phase equilibrium exists in the liquid phase densities as well3.

These results demonstrate that the Peng-Robinson equation of state is not suitable for the 
accurate description of thermal and caloric properties in the homogeneous region and for 
saturated liquid densities. Nevertheless, for the calculation of vapour pressures and 
equilibrium phase compositions of mixtures, and for the evaluation of corresponding 
experimental data, the use of cubic equations of state is quite functional as they yield fairly 

3  The poor quality of cubic equations of state in the description of liquid phase densities is generally 
known. One method that has become quite popular for improving the density calculation from cubic 
equations of state is called “volume shifting” [Aavatsmark (1995)]. However, the validity of this 
correction is restricted to a limited range of the liquid phase. 
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accurate results. For example, experimental data for the vapour pressure of many binary 
mixtures of natural gas components are reproduced by the Peng-Robinson equation of state 
over wide temperature and composition ranges to within (3 – 5)%, which is in most cases in 
agreement with the experimental uncertainty.  

2.1   Examples of Equations of State ... Applied in the Natural Gas Industry 
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3 Requirements for the New Equation of State for Natural 
Gases

Based on the investigations concerning the AGA8-DC92 equation of state, several years ago 
the Chair of Thermodynamics of the Ruhr-Universität Bochum decided to develop a new 
wide-range equation of state for natural gases in cooperation with the DVGW (German 
Technical and Scientific Association on Gas and Water) and European natural gas companies 
(E.ON Ruhrgas, Germany; Enagás, Spain; Gasunie, The Netherlands; Gaz de France, France; 
Snam Rete Gas, Italy; and Statoil, Norway), which are members of GERG (Groupe Européen 
de Recherches Gazières). The research project aimed to develop an equation of state that is 
suitable for all technical applications using natural gases and other mixtures consisting of 
natural gas components. 

The AGA8-DC92 equation of state of Starling and Savidge (1992) is known to be a very 
accurate standard for the calculation of the thermodynamic properties of natural gases at 
typical pipeline conditions, i.e. for temperatures 270 K T  330 K at pressures up to 
12 MPa. As mentioned in Chap. 2, the AGA8-DC92 equation shows significant shortcomings 
regarding, for example, the range of validity, the uncertainty in the description of natural 
gases at temperatures below 290 K and mixtures of unusual composition. These 
insufficiencies had to be reduced by the development of a new equation of state. The basic 
requirements on the new natural gas model were defined as follows: 

The new equation of state for natural gases should be valid in the entire fluid region, i.e. in 
the gas phase, the liquid phase, the supercritical region, and for vapour-liquid equilibrium 
(VLE) states. This wide range of validity enables the use of the equation in both standard 
and advanced technical applications for natural gases, such as pipeline transport, natural 
gas storage, and improved processes with liquefied natural gas4 (LNG). The extended 
range of validity represents the most important requirement regarding the basic structure of 
the new fundamental equation for natural gases. 

The highest demands on the accuracy of the new mixture model occur in standard natural 
gas applications, including gas metering, transmission, and storage. This requires the 
accurate description of the thermodynamic properties of different types of natural gases in 
the temperature range from 250 K to 350 K and at pressures up to 30 MPa. Therefore, the 
new equation of state had to achieve a very high accuracy in the gas phase with 
uncertainties of less than 0.1% in density and speed of sound. The targeted uncertainty in 

4  The development of modern natural gas liquefaction processes for LNG baseload plants requires a 
significant amount of information regarding the thermal and caloric properties of natural gases and 
mixtures of natural gas components, which are used as refrigerants in the pre-cooling, liquefaction, 
and sub-cooling cycles. Besides the mixture densities, further properties, such as enthalpy, entropy, 
and isobaric heat capacity, are needed for compressor and heat exchanger design. 
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the prediction of other caloric properties, such as the isobaric heat capacity and isobaric 
enthalpy differences, was defined to be less than 1%. This is in agreement with the 
recommendations of Klimeck et al. (1996), who investigated the representation of accurate 
experimental data for different caloric properties by previous equations of state including 
the AGA8-DC92 equation. The authors revealed significant shortcomings for all 
commonly used equations for industrial applications. 

The mentioned uncertainties are required for the prediction of properties of processed 
natural gases of sales quality. For natural gases of uncommon compositions, the 
uncertainties in density and speed of sound should not exceed 0.2% in the mentioned 
temperature and pressure ranges.  

Since the data situation for properties of natural gases is known to be poor in the liquid 
phase, the development of a new equation of state is mainly based on experimental density 
data in this region. For the use of the new equation in LNG custody transfer operations and 
the design of improved natural gas liquefaction processes, the uncertainty in liquid phase 
density should be less than (0.1 – 0.3)% in the temperature range from 100 K to 140 K. 

For the calculation of vapour pressures and phase compositions in vapour-liquid 
equilibrium, the use of cubic equations of state is very common. Therefore, the new 
equation of state for natural gases had to achieve an accuracy which at least corresponds to 
some of the best cubic equations of state. Thus, the targeted uncertainty in vapour pressure 
should be (3 – 5)%. Due to the poor data situation for phase equilibrium properties of 
natural gases, this requirement is applied mostly to the description of experimental VLE 
data for binary mixtures of the considered natural gas components. This is especially true 
for the binary mixtures consisting of the main natural gas components, namely methane, 
nitrogen, carbon dioxide, and ethane, which are of major interest. Nevertheless, in order to 
accurately predict dew and bubble points of natural gases containing further components, 
the accurate description of the VLE properties of mixtures containing the secondary 
alkanes from propane to n-octane and further secondary components was also required. For 
the accurate description of saturated liquid densities, the new equation of state should 
achieve a similar accuracy as that aimed for liquid phase densities. This would result in an 
enormous improvement compared to the poor performance of cubic equations of state in 
the liquid phase.

In contrast to the preliminary equation of state developed by Klimeck (2000), the new 
reference equation of state had to behave reasonably in regions characterised by poor data. 
This requirement is mostly related to the description of phase equilibrium properties in the 
critical region of binary mixtures (see Sec. 7.11). 

The structure of the new equation of state for natural gases should allow the extension of 
the mixture model to further components in a reasonable way without affecting the 
representation of mixtures of the so far considered components. Aside from the extension 
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to higher alkanes, such as n-nonane and n-decane, the addition of hydrogen sulphide is 
worthwhile in order to accurately describe the thermodynamic properties of acid gases5 and 
raw natural gases6. Moreover, natural gases may also contain small amounts of ethylene, 
propylene, benzene and toluene.

Considering the use of the new equation of state for natural gases in technical applications 
and with regard to complex phase equilibrium calculations7, the structure of the mixture 
model had to be kept as simple as possible. In practice, this enables sound programming 
and computing time-saving algorithms, and with that the development of user-friendly 
software. Within the framework of the equation project, a comprehensive software package 
had to be developed (see Sec. 7.14). This enabled the calculation of the thermodynamic 
properties in the homogeneous gas, liquid, and supercritical regions, and also allowed 
calculations of extensive VLE properties, including flash, phase envelope, dew point, and 
bubble point calculations for any binary and multi-component mixture. 

5  Acid gases mainly consist of carbon dioxide and hydrogen sulphide with minor traces of 
hydrocarbons (methane and water are important secondary components). Nowadays, these mixtures 
are injected, analogue to carbon dioxide geological storage, into deep saline aquifers and depleted 
hydrocarbon reservoirs driven by the need to dispose of hydrogen sulphide produced with natural 
gas from sour gas reservoirs. The injection of acid gases occurs over a wide range of aquifer and 
reservoir characteristics, acid gas compositions, and operating conditions [e.g. Boyle and Carroll 
(2002), Carroll (2002a,b)]. 

6  For instance, hydrogen sulphide must be removed from natural gases because of its high toxicity 
and strong, offensive odour. Carbon dioxide is removed because it has no heating value. Moreover, 
these gases are corrosive as they form weak acids when dissolved in water. 

7  Such calculations require extensive and sophisticated derivatives of the equation of state with 
respect to density, temperature, and composition (see Sec. 7.3). 
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4 Equations of State for Pure Substances 

Within the past 20 years highly accurate equations of state have been developed for many 
industrial fluids including substances relevant to natural gas such as methane [Setzmann and 
Wagner (1991)], nitrogen [Span et al. (2000)], carbon dioxide [Span and Wagner (1996)], 
ethylene [Smukala et al. (2000)] and water [Wagner and Pruß (2002)]. Most of these modern 
equations of state are fundamental equations explicit in the Helmholtz free energy as a 
function of density and temperature. Recently, further high accuracy fundamental equations 
were reported by Bücker and Wagner (2006a) for the main natural gas component ethane and 
the secondary components n-butane and isobutane [Bücker and Wagner (2006b)]. Moreover, 
in cooperation with the group of Wagner at the Ruhr-Universität Bochum, Germany, a new 
fundamental equation for propane has recently been developed at the National Institute of 
Standards and Technology (NIST), Boulder, USA [Lemmon et al. (2007)]. Selected examples 
of such reference quality equations of state are listed in Table 4.1. Comprehensive surveys of 
recommended reference equations of state for pure substances can be found in Span et al.
(2001) and Jacobsen et al. (2000). 

Table 4.1 Selected examples of reference quality equations of state explicit in the Helmholtz free 
energy for components relevant to natural gas 

Pure substance Reference Range of validitya Number 
  Temperature Pressure of terms 

Tmax/K pmax/MPa  

Methaneb Setzmann & Wagner (1991) 625 1000 40 
Nitrogen Span et al. (2000) 1000 2200 36 
Carbon dioxide Span & Wagner (1996) 1100 800 42 
Ethane Bücker & Wagner (2006a) 673 900 44 
Ethylene Smukala et al. (2000) 450 300 35 
Propane Lemmon et al. (2007) 650 1000 18 
n-Butane Bücker & Wagner (2006b) 573 69 25 
Isobutane Bücker & Wagner (2006b) 573 35 25 
Waterc Wagner & Pruß (2002) 1273 1000 56 
Oxygenb Schmidt & Wagner (1985) 300 82 32 
Argon Tegeler et al. (1999) 700 1000 41 
a The range of validity covers temperatures ranging from the triple point or melting line of the 

respective substance up to the maximum value listed in the temperature column. 
b Recommended as a standard by the International Union of Pure and Applied Chemistry (IUPAC). 
c Recommended as a standard by the International Association for the Properties of Water and Steam 

(IAPWS).
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All of the reference equations of state listed in Table 4.1 are explicit in the Helmholtz free 
energy and have the following characteristics in common: 

State-of-the-art experimental data for the thermodynamic properties of the respective fluid 
are represented to within their experimental uncertainty. 

The mathematical form of the equation of state was determined by applying state-of-the-art 
structure-optimisation techniques. 

The developed equations consist of a large number of terms (except for propane) ranging 
from 25 to more than 50 terms with complex functional forms, which are required for the 
accurate description of properties in the critical region. 

The coefficients of the equations were fitted simultaneously to the experimental data of 
many different properties (so-called multi-property fitting), e.g. density, speed of sound, 
isochoric and isobaric heat capacity, and phase equilibrium properties. 

The equations are valid over a wide range of temperature (e.g. from the melting line up to 
1000 K) and pressure (e.g. up to 1000 MPa). 

The equations behave reasonably in regions characterised by poor data only. 

The extrapolation to temperatures and pressures far beyond the range of validity, which is 
determined by the available and selected data used for the development of the equation of 
state, yields reasonable results. 

However, the large number of terms and the use of complex functional forms of these high 
accuracy equations of state adversely affect the complexity of modern mixture models (see 
Chaps. 5 and 7). These models use both pure substance equations of state for each component 
in the mixture and a number of further correlation equations developed with experimental 
data for many binary mixtures.  

Considering the use of a new formulation for mixtures of natural gas components in technical 
applications, the structure of the mixture model has to be kept as simple as possible. In 
practice, this enables sound programming and computing-time saving algorithms. At the same 
time, accurate experimental data for the thermodynamic properties of natural gases and other 
mixtures have to be represented by the new mixture model to within the uncertainty of the 
measurements. In order to meet these conflicting requirements, accurate technical equations 
of state along with highly accurate equations of state with only 12 to 24 terms and a less 
complex structure make up the pure substance basis for the new mixture model developed in 
this work8. Many of these equations for the natural gas main and secondary components, such 
as methane, nitrogen, carbon dioxide, ethane, propane, and heavier alkanes, as well as oxygen 

8  All types of equations of state can be used in the mixture model form developed here. However, due 
to the lack of highly accurate experimental data in the critical region, high accuracy pure substance 
equations of state are not required for mixture calculations. 
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and argon, were developed in preceding studies [Klimeck (2000), Span (2000a), Span and 
Wagner (2003a,b)]. Further equations of state for hydrogen, carbon monoxide, water and 
helium were developed in this work prior to the development of the new equation of state for 
natural gases and other mixtures. Details on the development of pure substance equations of 
state for the 18 natural gas components considered here are given in this chapter. A list of 
these components and their equations of state is presented in Table 4.2. 

Table 4.2 List of the 18 main and secondary natural gas components considered in the developed 
mixture model and their equations of statea

Pure substance Reference Range of validity Number 
  Temperature Pressure of terms 

T/K pmax/MPa  

Main components 
Methane Klimeck (2000) 90 – 623 300 24 
Nitrogen Klimeck (2000) 63 – 700 300 24 
Carbon dioxide Klimeck (2000) 216b – 900 300 22 
Ethane Klimeck (2000) 90 – 623 300 24 

Secondary alkanes 
Propane Span & Wagner (2003b) 85 – 623 100 12 
n-Butane Span & Wagner (2003b) 134 – 693 70 12 
Isobutane Span & Wagner (2003b) 113 – 573 35 12 
n-Pentane Span & Wagner (2003b) 143 – 573 70 12 
Isopentane Span (2000a) 112 – 500 35 12 
n-Hexane Span & Wagner (2003b) 177 – 548 100 12 
n-Heptane Span & Wagner (2003b) 182 – 523 100 12 
n-Octane Span & Wagner (2003b) 216 – 548 100 12 

Other secondary components 
Hydrogenc This work 14 – 700 300 14 
Oxygen Span & Wagner (2003b) 54 – 303 100 12 
Carbon monoxide This work 68 – 400 100 12 
Water This work 273 – 1273 100 16 
Heliumd This work 2.2 – 573 100 12 
Argon Span & Wagner (2003b) 83 – 520 100 12 
a The tabulated references correspond to the equations for the residual part of the Helmholtz free 

energy of the considered pure substances. The equations of Jaeschke and Schley (1995) for the 
isobaric heat capacity in the ideal-gas state were used to derive the Helmholtz free energy of the 
ideal gas for all components. 

b The equation can be extrapolated from the triple point temperature down to 90 K (see Sec. 4.11.1). 
c Represents equilibrium hydrogen. 
d Represents helium-4. The lower temperature limit of the equation of state is the lambda point at 

which helium I transitions to helium II. 

4   Equations of State for Pure Substances 
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The equations of state developed in the preceding works mentioned above as well as those 
developed in this work are empirical descriptions of the Helmholtz free energy. The 
development of these empirical formulations is based on the application of linear optimisation 
procedures and nonlinear multi-property fitting algorithms. Furthermore, for certain natural 
gas components, equations of state were applied which were developed with an optimisation 
algorithm considering experimental data of different fluids simultaneously. The optimisation 
and fitting strategies are state-of-the-art and have already been described in detail in the 
literature [e.g. Setzmann and Wagner (1989), (1991), Wagner and de Reuck (1996), Span et
al. (1998), Span (2000b), and Wagner and Pruß (2002)]. Thus, the following sections briefly 
summarise some of the basic facts which are required for a rough understanding of the 
sophisticated procedures that were used for the development of the pure substance equations 
of state forming the basis of the developed mixture model. 

4.1 Basic Structure of an Equation of State Explicit in the Helmholtz 
Free Energy 

The equations of state described in this chapter are fundamental equations explicit in the 
Helmholtz free energy a with the independent variables density  and temperature T. The 
function a T( , ) is commonly split into ao , which represents the properties of the ideal gas at 
a given T and , and ar , which takes into account the residual fluid behaviour. This 
convention can be written as

a T a T a T( , ) ( , ) ( , )o r . (4.1) 

Usually, the Helmholtz free energy is used in its dimensionless form a RT . Thus, 
Eq. (4.1) becomes 

( , ) ( , ) ( , )o r , (4.2) 

where c  is the reduced density and T Tc  is the inverse reduced temperature with 

c  as the critical density and Tc as the critical temperature of the considered fluid. 

4.2 The Calculation of Thermodynamic Properties Derived from the 
Helmholtz Free Energy 

Since the Helmholtz free energy as a function of density and temperature is one of the four 
fundamental forms of an equation of state, all thermodynamic properties of a pure substance 
can be obtained by combining derivatives of Eq. (4.2). For example, in the homogeneous gas,  
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liquid, and supercritical regions, the pressure p, enthalpy h, and entropy s can be determined 
from the following equations9:

p
RT

( , ) 1 r , (4.3) 

h
RT
( , ) 1 o r rc h , (4.4) 

s
R

( , ) o r o rc h . (4.5) 

Further relations between Eq. (4.2), its derivatives, and the thermodynamic properties 
considered in many technical applications are listed in Table 7.1, which gives the relationship 
among thermodynamic properties and the dimensionless Helmholtz free energy for the 
mixture model developed here10 (see Chaps. 5 and 7).

4.2.1 The Calculation of Phase Equilibrium Properties 

In addition to the calculation of thermodynamic properties in the homogeneous region of the 
fluid surface, phase equilibrium properties, such as vapour pressure and saturated liquid 
(indicated by a single prime) and vapour (indicated by a double prime) density, can be 
determined from fundamental equations explicit in the Helmholtz free energy. Therefore, the 
following phase equilibrium conditions must be satisfied: 

equality of temperature T T T , (4.6) 

equality of pressure p p ps , (4.7) 

equality of chemical potential . (4.8) 

For a pure substance the chemical potential  equals the Gibbs free energy g. Thus, applying 
the relations between Eq. (4.2), its derivatives, and the thermodynamic properties to 
Eqs. (4.6) – (4.8) yields the equations

p
RT
s r1 ( , ), (4.9) 

p
RT
s r1 ( , ) , (4.10) 

p
RT

s r r1 1F
HG

I
KJ
F
HG
I
KJln ( , ) ( , ) . (4.11) 

                                                
9 ( / ) , ( / ) . 
10  The Helmholtz free energy of a mixture is a function of density, temperature, and the mixture 

composition. The thermodynamic properties in the homogeneous gas, liquid, and supercritical 
regions of a mixture are related only to derivatives with respect to density and temperature. Thus, in 
the homogeneous region, the same relations can be applied to both pure substance equations and 
equations of state for mixtures explicit in the Helmholtz free energy. 

4.2   The Calculation of Thermodynamic Properties... 
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At a given temperature, the vapour pressure and the densities of the coexisting phases can be 
determined from the equation of state by simultaneous solution of Eqs. (4.9) – (4.10)11.

The simultaneous solution of the phase equilibrium conditions requires the use of an iterative 
procedure. Suitable initial values for the unknown variables ps , , and  can be obtained 
from auxiliary equations for the saturated properties of the respective pure substance.  

4.3 The Equation for the Helmholtz Free Energy of the Ideal Gas 

The Helmholtz free energy of the ideal gas is given by 

a T h T RT Ts To o o( , ) ( ) ( , ). (4.12) 

For the ideal gas, the enthalpy ho  is a function of temperature only, whereas the entropy so

depends on temperature and density. Both properties can be derived from an equation for the 
ideal-gas heat capacity c Tp

o( ). When cp
o  is inserted into the expression for h To( )  and s To( , )

in Eq. (4.12), one obtains 

a T c T h RT T
c R

T
T R spT

T p
T

To o o
o

o
od d( , ) lnL

NM
O
QP

F
HG
I
KJ

L
N
MM

O
Q
PPz z

0 0
0

0
0 , (4.13) 

where all variables with the subscript “0” refer to an arbitrary reference state. Occasionally, 
the enthalpy h0

o  and the entropy s0
o  are taken to be zero for T0 = 298.15 K, 

p0 = 0.101325 MPa, and the corresponding density 0 0 0
o p RTa f.

In order to obtain the equations for a To( , ) and o( , ), the equations of Jaeschke and 
Schley (1995) were used for the isobaric heat capacity in the ideal-gas state, c Tp

o( ), for the 18 
natural gas components12 considered for the mixture model developed in this work (see 
Table 4.2). These equations use the functional form 

c
R

b b T
T

b T
T

p
k

k

kk
k

k

kk

o F
HG

I
KJ

F
HG

I
KJ0

2

1 3

2

2 4sinh cosh, ,a f a f . (4.14) 

Jaeschke and Schley (1995) determined the coefficients b0 , bk  and parameters k  by fitting to 
selected cp

o  values available in the literature, taking into account data at temperatures ranging 
from 10 K to 1000 K. After rearranging the coefficients and parameters, namely n b3 0 1o ,
and n bk k3

o  and k k T3
o

c  for k = 1 to 4, one obtains from Eq. (4.14) 

c
R

n n np
k

k

kk
k

k

kk

o
o o

o

o
o

o

o

F
HGG

I
KJJ

F
HGG

I
KJJ

1 3

2

4 6

2

5 7sinh cosh, ,c h c h  (4.15) 

11  Equation (4.11) represents the integral criterion of Maxwell (Maxwell criterion). 
12  For the temperatures considered in this work, only the translational contribution to the ideal-gas 

heat capacity of helium and argon has to be taken into account: c c Rp p, , .He
o

Ar
o 2 5 . 
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with T Tc . The values of the coefficients and parameters of Eq. (4.15) are given in 
Table A3.113 of the appendix.

Combining c Tp
o( ) in Eq. (4.15) with ao  in Eq. (4.13) results in the dimensionless form of the 

Helmholtz free energy in the ideal-gas state o [see Eq. (4.2)] for the 18 components 
considered in this work, given as Eq. (7.5). 

4.4 Fitting and Optimising the Structure of an Equation for the 
Residual Part of the Helmholtz Free Energy 

While statistical thermodynamics can predict the behaviour of fluids in the ideal-gas state 
with high accuracy, no physically founded equation is known which accurately describes the 
real thermodynamic behaviour of fluids over the whole fluid region. Thus, for this purpose an 
equation for the residual fluid behaviour, in this case for the residual part of the Helmholtz 
free energy r , must be determined in an empirical way. Since the Helmholtz free energy 
itself is not accessible by direct measurements, it is necessary to determine the unknown 
mathematical structure and the unknown coefficients of the residual part of the dimensionless 
Helmholtz free energy from properties for which experimental data are available.  

In this context, the development of the final form of an equation for r  requires the following 
steps:

Selection of the final data set. 

Weighting of the data. 

Precorrelation of auxiliary quantities. 

Linear least-squares fitting in connection with the structure-optimisation method. 

Nonlinear least-squares fitting. 

In this work, only basic statements on the fitting and optimisation procedures applied to 
develop an equation for r  for the considered substance are made. More detailed descriptions 
of the algorithms used are provided by Wagner and Pruß (2002) and Span (2000b). 

4.4.1 Fitting an Equation for r to Data 

If a certain functional form has been selected for r ( , , )n , data for J different properties z j

(e.g. pressure p, speed of sound w, etc.) can be used to determine the unknown coefficients ni

(expressed as the vector n ) by minimising the following sum of squares: 

13  To denote the pure substance as a component in a mixture, the subscripts “o” (referring to pure 
substance) and “i” (referring to the considered component) are introduced (see Chaps. 5 and 7). 

4.3   The Equation for the Helmholtz Free Energy of the Ideal Gas 
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2 2

1

2 2

11

L
NM

O
QPj

j

J

j m
m

m

M

j

J
z z x y n

j

exp calc exp exp tot
==

, ,
,

,c h , (4.16) 

where Mj  is the number of data points used for the jth property, zexp  is the experimental value 
for any property z, and zcalc is the value for the property calculated from the equation for 
with the parameter vector n  at xexp  and yexp . The measured independent values of x and y
may vary for the different properties of z, but usually one of them corresponds to the 
temperature T, while the other corresponds to the density  or pressure p (e.g. p T( , ) or 
w T p( , )). When data sets of different properties are used for the development of a correlation 
equation, then the residuum z z zexp calcc h of Eq. (4.16) is reduced with a suitable 
measure for the uncertainty of the data point considered. According to the Gaussian error 
propagation formula, the uncertainty of a measured data point is given by 

exp
2 L
NM
O
QP

L
NM
O
QP

L
NM
O
QP

z
x

z
y

z
zy z

x
x z

y
x y

z
, , ,

2
2

2
2

2
2 , (4.17) 

where x , y , and z  are the isolated uncertainties of the single variables x, y, and z,
respectively. The partial derivatives of z  have to be calculated from a preliminary equation 
of state. 

In order to have an additional influence on the data set, a weighting factor fwt is introduced. 
The total variance tot

2  of a data point used in Eq. (4.16) is defined as

tot exp wt
2 2 2f . (4.18) 

In this way, weighting factors fwt  1 increase the influence of a data point with respect to 
the sum of squares and weighting factors fwt  1 reduce it. Usually fwt is equal to one and 

tot
2  is equal to exp

2 . However, in some cases different weighting factors are used to 
compensate for effects caused by the structure of the data set.

The determination of n  by minimising 2  for data of more than one property is called “multi-
property fitting”. This problem will lead to a linear system of normal equations if each of the 
properties z depends on the same independent variables as the function used (e.g. T and  for 
the Helmholtz free energy) and if the relations between z and the function or its derivatives is 
linear for all considered properties. Data for such properties are called “linear data”. For 
functions in terms of the Helmholtz free energy, examples of such properties are p T( , ) and 
c Tv( , ) (see Table 4.3). If one or both of these conditions is not fulfilled (e.g. for h T p( , ),
w T p( , ), c T pp( , )), those data are called “nonlinear data” and more complicated and time-
consuming nonlinear algorithms must be used to minimise the sum of squares, Eq. (4.16). 
Table 4.3 lists selected sums of squares of the linear and nonlinear data used for the 
development of the equations presented in this work. The total sum of squares is obtained as 
given by Eq. (4.16). 
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Table 4.3 Contribution of selected linear, nonlinear, and linearised data to the weighted sum of 
squares for the fitting and optimisation processa–c

j Type of data Weighted sum of squares 

Linear data 

1 p T( , ) 1
2

2

2
2

1

1 L
NM

O
QP

p RT
RT m

m
m

M

r
1 r

2 c Tv ( , ) 2
2 2

2
2

1

2 L
NM

O
QP

c
R
v

m
m

m

M
o rc h

3 B T( )  3
2

0

2
2

1

3 L
NM

O
QPB

m
m

m

M

r
rlim  

4 a ( )T 4
2

0

2
2

2

2

1

2 2
1 14 L

N
MM

O

Q
PP

L

N
MM

O

Q
PPa r

r
o

o
r

o

o
rlim

c h
m

m
m

M

Nonlinear data 

5 w T p( , )  5
2

2
2

2

2

2

2

1

1 2
15 L

N
MM

O

Q
PP

L

N
MM

O

Q
PP

w M
RT

m

m
m

M
r r

r r

o r

c h
c h

6 c T pp( , )  6
2 2

2

2

2

2

1

1

1 2

6 L

N
MM

O

Q
PP

c

R
p

m

m
m

M
o r

r r

r rc h c h

7
h T p

h T p
2 2 2

1 1 1

( , )

( , ) 7
2 2

2

1

1 2 1

2
2

1

7 L
NM

O
QP

h
RT

h
RT m

m
m

M
o r r o r rc h c h

8 p Ts( )  8
2

2
2

1

8 L
NM

O
QP

p p
RT m

m
m

M
s s calc

r r

,

9 ( )T 9
2

2
2

1

9 L
NM

O
QP

calc

r m
m

m

M

10 ( )T 10
2

2
2

1

10 L
NM

O
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r m
m

m

M

Linearised data 

11 w T( , , )p p
11
2

2
2

2
2

1

1 2
11 L
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O
QP

w M
RT

m
m

m

M
p r rc h

12 c Tp( , , )p p
12
2 2

2
2

1

12 L
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O
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c

R
p

m
m

m

M
o r pc h

4.4   Fitting and Optimising the Structure of an Equation... 
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Table 4.3 (continued)

j Type of data Weighted sum of squares 

Linearised data (continued) 

13
h T

h T
2 2 2

1 1 1

( , )

( , )

p

p 13
2 2

2

1

1 2 1

2
2

1

13 L
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O
QP

h
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h
RT m

m
m

M
o r r o r rc h c h

14 p T( , )p
14
2

2
1

2
2

1

14 L
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O
QP

p RT
RT m

m
m

M
s

r
r ( , )  

15 p T( , )p
15
2

2
1

2
2

1

15 L
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O
QP

p RT
RT m

m
m

M
s

r
r ( , )  

16
Maxwell
criterion 16

2
2

2

1

1 116 F
HG

I
KJ
F
HG
I
KJ

L
NM

O
QP

p
RT m

m
m

M
s r rln ( , ) ( , )  

a For the relations between the different thermodynamic properties and o and r  and their
derivatives see Table 7.1; for a pure substance r c .

b For the weighted sum of squares the following abbreviations and definitions are used: 

 • FH IK ,
F
HG
I
KJ

2

2 , FH IK ,
F
HG
I
KJ

2

2 ,
F
HG
I
KJ

2

 • The weight m  corresponds to the quantity tot  according to Eq. (4.18). 
 • The superscript “p” means precorrelated.  

 • p
p

p
c T

c T
p

v

( , )

( , )
, p

r r

r r
p

L

N
MM

O

Q
PP

c c

R
p v 1

1 2

2

2
c h

,
 • o o oc cp v/  is the isentropic exponent of the ideal-gas mixture. 
c All precorrelated quantities are calculated from a preliminary equation of state. 

4.4.2 Basic Statements for Optimising the Mathematical Form of r

Since the functional form of an equation for the residual part of the Helmholtz free energy is 
not initially known, a suitable mathematical structure must be established before any 
coefficients ni  can be fitted to the data. In the past, the structure of most correlation equations 
was determined subjectively, based on the experience of the correlator or by trial and error. 
To improve this situation, Wagner and co-workers developed different optimisation strategies 
[Wagner (1974), Ewers and Wagner (1982), Setzmann and Wagner (1989), and Tegeler et al.
(1999)], which introduce objective criteria for the selection of the mathematical structure of 
such equations.  

The entire strategy of the structure optimisation of an equation for r  consists of two basic 
steps:
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Formulation of a comprehensive set of mathematical functions of the reduced density and 
inverse reduced temperature that is used as a “bank of terms”. 

From this bank of terms, the structure-optimisation method determines with mathematical 
statistical and stochastic methods the best combination of a certain number of terms.  

In order to determine suitable mathematical structures for the residual part of the Helmholtz 
free energy of the equations of state developed in this work14, a modified form of the 
structure-optimisation method developed by Setzmann and Wagner (1989) was used. The 
most significant changes, which were introduced by Span and Wagner (1996), regard the 
handling of different functional forms in the bank of terms as described in the following 
paragraph.

A sophisticated correlation equation for the residual part of the Helmholtz free energy 
consists of an extensive sum of terms. Hence, the mathematical form of a single term can be 
associated with different functional groups ranging from simple polynomials in the reduced 
density  and the inverse reduced temperature  to complicated exponential expressions [see 
the different banks of terms given by Eq. (4.26) and Eqs. (7.165) – (7.167)]. Additional 
limitations with respect to the number of terms belonging to certain functional groups turned 
out to be useful [Span and Wagner (1996)] and the optimisation algorithm was modified to 
allow such limitations; for further details see Span (2000b). 

The used structure-optimisation method only works with linear data (see Sec. 4.4.1). Thus, to 
take into account in the optimisation process, at least partly, the experimental information for 
the nonlinear data, the nonlinear relations between these properties and the derivatives of o

and r  were linearised. The results of this linearisation for the sum of squares of selected 
nonlinear properties, which were considered for the development of the equations of state 
presented in this work, are listed in Table 4.3. An example of such a linearisation is shown in 
the following for the property speed of sound w.

According to the relation between the property z = w and the derivatives of o and r  given 
by

w M
RT

2
2

2

21 2
1( , ) r r

r r

o r
c h
c h , (4.19) 

the sum of squares [see Eq. (4.16)] for fitting an equation for r  to Mw  experimental data of 
w [w is the jth property in Eq. (4.16) considered in the entire multi-property fitting process] 
reads:

                                                
14  The residual part of the Helmholtz free energy of the equations of state for the pure substances 

hydrogen, water and helium as well as the correlation equations for many binary mixtures were 
determined with the structure-optimisation method described in this section. The equation of state 
for carbon monoxide was developed by fitting the coefficients of an existing simultaneously 
optimised structure to data. 

4.4   Fitting and Optimising the Structure of an Equation... 
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j
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c h
c h , . (4.20) 

This type of sum of squares leads to a nonlinear system of normal equations when 
determining the coefficients n  in the equation for r ( , , )n . However, the structure-
optimisation method used here cannot cope with such a nonlinear system. A further difficulty 
arises because the speed of sound is not measured as a function of density and temperature, 
which are the independent variables of the equation for r , but of pressure and temperature. 
Thus, the sum of squares according to Eq. (4.20) is implicitly nonlinear. As shown by 
Schmidt and Wagner (1985), this implicitly nonlinear relation can be linearised by using the 
following sum of least squares: 

j
m

m
m

M w M
RT

w
2

2
2

2
2

1
1 2

L
NM

O
QP

p r r
totc h ,  (4.21) 

with the so-called precorrelation factor p according to 

p
p

p

c T

c T
p

v

,

,

c h
c h . (4.22) 

The density p  and the precorrelation factor p have to be precalculated by a preliminary 
equation of state. 

Because the linearisations of the nonlinear sums of squares require precalculations with 
preliminary equations of state, the entire process of optimising the structure of the r

equation is a recursive process; see Wagner and Pruß (2002) and Span (2000b) for further 
details.

4.5 The Simultaneous Optimisation Method 

Based on the structure-optimisation algorithm developed by Setzmann and Wagner (1989) 
(see Sec. 4.4.2), an algorithm for the optimisation of functional forms of empirical equations 
of state which considers data sets of different substances simultaneously was developed by 
Span et al. (1998). In this way, equations for the residual part of the Helmholtz free energy 
can be developed which yield, on average, the best representation of the thermodynamic 
properties of all substances within larger groups of substances (e.g. nonpolar and polar 
substances).

For the simultaneous optimisation, mathematical functions of the reduced variables  and 
are used to define a bank of terms which is shared by all considered substances. The use of 
such a simple corresponding states similarity makes it possible to develop more accurate 
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equations of state for substances characterised by a poor data situation when data for well-
measured substances are added to the regression matrices.  

In order to determine the best mathematical structure of an equation for the residual part of 
the Helmholtz free energy, a criterion which gives assessment to the quality of the resulting 
equation of state is needed for any optimisation method. The sum of squares 2  according to 
Eq. (4.16) represents such a criterion in the algorithm of Setzmann and Wagner (1989). In the 
simultaneous optimisation procedure, the corresponding sum of squares i

2  has to be 
calculated from each of the I regression matrices, which represent the data sets of the I
considered substances. Equivalent to 2  the sum of squares is then defined as  

2 2

1

2 2

1
i

i

I

i i
i

I

ref , , (4.23) 

where the reference sums of squares ref,i
2  are used to reduce the sums of squares i

2  in order 
to compensate for the larger influence of extensive data sets for well-measured substances on 
the total sum of squares15. The sum of squares ref,i

2  results from an equation of state of the 
same length which is individually optimised for the corresponding substance i. Thus, in the 
simultaneous optimisation the reduced sum of squares of substance i, i i i

2 2 2
ref, , will 

equal 1 if the current simultaneously optimised formulation describes the data set as well as 
the individually optimised equation of state.

Based on this optimisation method, accurate equations of state for technical applications of a 
group of non- and weakly polar substances with an identical mathematical structure were 
developed by Span and Wagner (2003a,b) and Span (2000a). This development was important 
for this work to realise a wide-range equation of state for mixtures of natural gas components 
with a structure as simple as possible. Thus, the equations for the normal alkanes from 
propane to n-octane, and the fluids oxygen, argon, isobutane and isopentane were used (see 
Table 4.1 and Sec. 4.9).

For extensions of the presented mixture model, there are further pure substance equations of 
state of interest, e.g. the equation for ethylene [Span and Wagner (2003b)] and the equations 
for n-nonane, n-decane, hydrogen sulphide, and toluene [Lemmon and Span (2006)]. The 
equations of state recently developed by Lemmon and Span (2006) maintain the 
simultaneously optimised structure developed by Span and Wagner (2003b), only the 
coefficients were fitted to the experimental data of the respective substances.  

                                                
15  Extensive data sets of well-measured substances will result in high values for i

2  even if the 
representation of the data is satisfactory. 

4.5   The Simultaneous Optimisation Method 
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4.6 Functional Forms for r and the Bank of Terms 

For the development of a suitable form of the equation for the residual part r  of any wide-
range equation of state, the collection of the comprehensive set of functional forms for the 
bank of terms is of great importance. 

The pure substance equations of state developed in this work and those from preceding works 
selected to form the basis of the developed wide-range equation of state for natural gases and 
other mixtures use the following different functional forms: 

polynomial terms and  

polynomial terms in combination with exponential functions. 

These two functional forms are used in many formulations for the residual Helmholtz free 
energy, especially for equations of state for those substances which are mainly of engineering 
interest. Some of the characteristics of these terms are briefly described in Secs. 4.6.1 and 
4.6.2.

More complex functional forms are commonly used for highly accurate equations of state for 
selected substances of particular scientific and engineering interest (see Table 4.1). To 
improve the representation of properties in the extended critical region, sophisticated 
functional forms have been introduced in such reference equations of state, such as modified 
Gaussian bell-shaped terms [Setzmann and Wagner (1991)] and nonanalytical terms [Span 
and Wagner (1996)]. Recently, to eliminate certain undesirable characteristics of modern 
multi-parameter equations of state, which exhibit a behaviour in the two-phase region that is 
inconsistent with the physical behaviour of fluids, a further type of functional form has been 
developed by Lemmon and Jacobsen (2005). This type of term overcomes the mentioned 
dilemma and results in equations of state for pure fluids that are more fundamentally 
consistent.

4.6.1 Polynomial Terms 

Polynomial terms have been part of all previous wide-range equations of state. They are a part 
of the bank of terms in the following form: 

i i
d tn i ir  (4.24) 

with c  and T Tc . To achieve good extrapolation for the equation of state to be 
developed, the values of the density exponents di  should be limited to the range from 1 to 5 
with integral step sizes. This limitation is particularly important when extrapolating to high 
densities. For the same reason, the values of the temperature exponents ti  should be limited to 
a small range as well. Moreover, the temperature exponent ti  of the polynomial term with the 
highest density exponent di  (the leading term when extrapolating the equation to high 
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densities) should be between 0 1ti ; for further details and discussions of these 
considerations see Span and Wagner (1997). In order to provide a sufficiently large selection 
of these functional terms despite the small range for ti , a step size of 0.125 is commonly used 
for the temperature exponents of the polynomial terms. 

4.6.2 Polynomial Terms in Combination with Exponential Terms 

The mathematical structure of polynomial terms in combination with exponential functions is 
illustrated by the equation  

i i
d tn ei i

cir . (4.25) 

Terms with ci 2 are known as Benedict, Webb, and Rubin (BWR)-type terms, see Benedict 
et al. (1940). In an extended form, namely with density exponents up to ci 6, these terms 
are nowadays considered to be the standard functional forms of modern, wide-range, pure-
substance equations of state.

In order to avoid unwanted influences of the polynomial terms coupled with the exponential 
functions when extrapolating an equation of state, the temperature exponent ti  in Eq. (4.25) 
should be greater or equal to one in the bank of terms, but is not compulsory.  

4.6.3 The Bank of Terms 

Based on the various functional forms selected by the correlator, the general expression of the 
bank of terms for the residual part r  of the dimensionless Helmholtz free energy equation is 
the sum of all considered functional forms. Such a bank of terms typically consists of 500 to 
1000 terms. 

The bank of terms used in the development of the equations of state for hydrogen, water and 
helium consisted of 562 terms and can be written as  

r  = nkl
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. (4.26) 

4.6   Functional Forms for r and the Bank of Terms 
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4.7 The Structure of the Equations of State Used for the New 
Mixture Model 

The wide-range equation of state for natural gases and other mixtures presented in this work 
is based on equations of state in the form of the fundamental equation for the Helmholtz free 
energy for the pure natural gas components (see Chaps. 5 and 7). Thus, the uncertainties of 
the pure substance equations of state directly influence the accuracy in the description of the 
thermodynamic properties of mixtures. High accuracy equations of state are available for 
many of the natural gas components considered in the new mixture model (see Table 4.1). 
The complex mathematical structures of these equations would adversely affect the 
complexity of the mixture model, which uses a number of further correlation equations to 
accurately describe the behaviour of binary and multi-component mixtures. Therefore, the 
pure substance equations of state developed in this work and those from preceding works, 
selected to form the basis of the wide-range equation of state for natural gases and other 
mixtures, consist of only polynomial terms and polynomial terms in combination with 
exponential terms (see Sec. 4.6). Hence, a similar structure is realised for the pure substance 
basis of the mixture model. According to Eqs. (4.24) and (4.25), the equations for the residual 
part of the dimensionless Helmholtz free energy read16
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The maximum number of terms, which is the sum of the number of polynomial terms KPol

and of polynomial terms in combination with exponential expressions KExp, ranges from 12 
to 24 for the equations used here. The values of the coefficients and exponents of Eq. (4.27) 
are given in Tables A3.2 – A3.4 for all considered pure substances, see also Sec. 7.1. 

The use of a similar and comparatively simple mathematical structure for the equations of 
state of all considered substances enables sound programming and computing time saving 
algorithms. This feature is important when considering the use of the new equation of state for 
mixtures of natural gas components in technical applications and with regard to complex 
phase equilibrium calculations. Such calculations require extensive and sophisticated 
derivatives of the residual Helmholtz free energy of the mixture model with respect to 
density, temperature, and composition (see Sec. 7.3). 

                                                
16  To denote the pure substance as a component in a mixture the subscripts “o” (referring to pure 

substance) and “i” (referring to the considered component) is used in Chaps. 5 and 7. 
Equation (4.26) then reads 
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Nevertheless, with regard to technical applications, the demands on the accuracy of both the 
pure substance equations of state and the wide-range equation of state for mixtures of natural 
gas components are rather high. Thus, a new class of highly accurate equations of state was 
developed by Klimeck (2000) for the natural gas components methane, nitrogen, carbon 
dioxide and ethane, which are the main constituents of common natural gases. The new 
equations satisfy the high demands on the accuracy while maintaining a mathematically 
simple structure. Further details on these equations and those used for the secondary natural 
gas components, such as propane and heavier alkanes, hydrogen, oxygen, and water, are given 
in the following sections.  

4.8 The Equations of State for the Main Natural Gas Components 

For the development of a wide-range equation of state for natural gas mixtures, the accuracy 
of the equations for the main natural gas components, namely methane, nitrogen, carbon 
dioxide and ethane, is of fundamental importance as these components cover about 97% of 
the composition of typical natural gas mixtures.  

The use of the developed mixture model in standard natural gas applications, such as pipeline 
transport and natural gas storage, requires the accurate description of the thermodynamic 
properties of natural gases in the temperature range from 250 K to 350 K at pressures up to 
30 MPa. In reduced properties, this range corresponds to reduced temperatures ranging from 
T Tr 1 2.  to T Tr 18. , where Tr  is an estimate for the reducing temperature of a typical 
natural gas17. For a pure component, the reducing temperature Tr  equals the critical 
temperature of the respective substance. The temperature range which is of main interest for a 
pure substance then corresponds to the reduced temperature range 1 2 18. .T Tc . Therefore, 
the highest demands on the accuracy of the equations of state for the main natural gas 
components have to be satisfied for this range of supercritical temperatures. Due to that 
reason, the development of the pure substance equations of state was focused on the 
supercritical region at pressures up to 30 MPa.

In other regions of the thermodynamic surface, the demands on the accuracy of the pure 
substance equations were higher than required for the mixture model. However, a highly 
accurate description of the properties of the main natural gas components is not necessary for 
temperatures T T3 c.

The equations used in this work for the four mentioned main natural gas components were 
developed in a preceding project by Klimeck (2000). This new class of highly accurate 
equations of state has the following characteristics: 

                                                
17  The reducing temperature varies due to different natural gas compositions. 
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The development was based mainly on the comprehensive data sets of various thermal and 
caloric properties that were used for the development of the reference equations of state for 
methane [Setzmann and Wagner (1991)], nitrogen [Span et al. (2000)], carbon dioxide 
[Span and Wagner (1996)] and ethane18 [Bücker and Wagner (2006a)]. In addition, state-
of-the-art density and speed of sound measurements for methane and carbon dioxide, 
which were not available at the time the corresponding reference equations of state were 
developed, were used for the development of the new equations [e.g. Trusler and Costa 
Gomes (1996), Estrada-Alexanders and Trusler (1998), Klimeck et al. (2001)]. Thus, 
compared to the respective reference equation of state, the description of the thermal and 
caloric properties of methane was significantly improved for temperatures between 240 K 
and 300 K (see Figs. 4.1 and 4.2). 

In addition to the updated data sets, certain properties were calculated from the 
corresponding reference equations of state and from auxiliary equations to be used in 
fitting. 

The new equations of state were developed by using the multi-property fitting and 
optimisation methods described in Secs. 4.4 and 4.5. The equations for methane, nitrogen 
and ethane use an identical simultaneously optimised structure with 24 terms. The shared 
structure yields a similar description of the thermodynamic properties of the pure 
components. The equation for carbon dioxide was developed separately19 and consists of 
22 terms. 

The equations are valid over wide ranges of temperature and at pressures up to 300 MPa 
(see Table 4.2). 

The new equations of state describe the thermodynamic properties of the respective pure 
substances more accurately than is required for the calculation of the thermodynamic 
properties of mixtures.  

At supercritical temperatures and at pressures up to 30 MPa the new equations of state 
achieve almost the same high accuracy as the corresponding reference equations of state. 
The uncertainty of the equations regarding gas phase density and speed of sound is 
estimated to be (0.03 – 0.05)% over wide ranges of temperature and at pressures up to 
30 MPa. State-of-the-art density data are reproduced by the equations with deviations of 
less than 0.03%. In the liquid phase, the uncertainty of the equations with regard to 
density amounts to (0.05 – 0.1)% at pressures up to 30 MPa. The uncertainty in liquid 

                                                
18  In contrast to the reference equation of state for ethane developed by Bücker and Wagner (2006a), 

who used state-of-the-art density data sets of Claus et al. (2003) and Funke et al. (2002a,b), 
preliminary density measurements of Claus et al. (1999) were used for the equation of state 
developed by Klimeck (2000). 

19  The equation was developed individually because the reduced thermodynamic properties of carbon 
dioxide significantly deviate from those of the simultaneously optimised substances.  
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phase speed of sound is estimated to be (1 – 2)%. On the vapour-liquid phase boundary, 
data for the vapour pressure, the saturated liquid density, and the saturated vapour density 
are represented by the equations to within (0.03 – 0.05)%. 

A highly accurate description of the critical region is neither necessary nor intended for the 
mixture model developed in this work. Nevertheless, the equations achieve a more accurate 
description of properties in the extended critical region20 than equations widely applied in 
practice.

The extrapolation to temperatures and pressures beyond the range of validity yields 
reasonable results (see Sec. 4.11.2). 

Since methane is the most important natural gas component, which covers more than 80% of 
the composition of typical natural gases, the characteristics of the equation of state used for 
this substance are decisive for the accuracy of the new mixture model. Figure 4.1 shows 
comparisons between selected experimental density data and values calculated from the new 
equation of state for methane. In the temperature range from 230 K to 350 K, the p T relation 
of methane is described very accurately by the data of Klimeck et al. (2001). The new 
equation of state represents these data to within their experimental uncertainty, which is 
approximately 0.02% in density. Other high accuracy data like the experimental results of 
Jaeschke and Hinze (1991) are reproduced with deviations of less than 0.05%, which is also 
in agreement with the uncertainty of the measurements. Since the reference equation of state 
developed by Setzmann and Wagner (1991) is based on a less accurate data set, the reference 
equation deviates from the state-of-the-art data of Klimeck et al. (2001) by slightly more than 
+0.02%, especially at elevated pressures between 10 MPa and 30 MPa.

Aside from the improved description of supercritical densities, significant improvements, 
which are considered to be important for the wide-range equation of state for natural gases as 
well, are also achieved for caloric properties as shown in Fig. 4.2 for the speed of sound at 
supercritical temperatures ranging from 250 K to 375 K. All of the state-of-the-art speed of 
sound data of Trusler and Costa Gomes (1996) are reproduced by the new equation of state to 
within 0.03%; the uncertainty of the data is estimated to be (0.01 – 0.02)%. Values 
calculated from the reference equation of state of Setzmann and Wagner (1991) deviate from 
the measured data at temperatures below 275 K by more than 0.1% at elevated pressures. 

A similar accurate representation is achieved for other caloric properties, such as the isobaric 
heat capacity and isobaric enthalpy differences.  

                                                
20  The extended critical region is indicated in this work by densities of 0 6 1 4. .c c  at 

temperatures of 0 98 1 2. .T T Tc c .
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Fig. 4.1 Percentage density deviations of selected experimental p T data for methane from values 
calculated from the new equation of state, see text. Values calculated from the reference 
equation of state of Setzmann and Wagner (1991) are plotted for comparison. Bu: Burnett 
apparatus, Op: optical interferometry method. 

Further details concerning the development of the new class of highly accurate equations of 
state for methane, nitrogen, carbon dioxide and ethane and comprehensive comparisons to 
experimental data and values calculated from reference equations of state are given in 
Klimeck (2000) and Klimeck et al. (1999). As a result of these comparisons,  
Figs. A1.1 – A1.8 given in the appendix show conservative estimations of the uncertainty of 
the new equations with respect to density and speed of sound in the homogeneous gas, liquid, 
and supercritical regions of the respective substances. 
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Fig. 4.2 Percentage deviations of selected experimental speed of sound data for methane from 
values calculated from the new equation of state, see text. Values calculated from the 
reference equation of state of Setzmann and Wagner (1991) are plotted for comparison. 

4.9 The Equations of State for the Secondary Alkanes and Other 
Secondary Natural Gas Components 

A new class of accurate technical equations of state was developed by Span and Wagner 
(2003a,b) and Span (2000a) for a group of non- and weakly polar substances. These equations 
are based on a simultaneously optimised structure which consists of 12 functional terms. 
Although the greatest part of the composition of typical natural gases is covered by the main 
natural gas components (see Sec. 4.8), the accuracy of the equations used for the secondary 
natural gas components is not of minor importance as the new mixture model is designed to 
accurately describe the properties of various natural gases and other mixtures over wide 
ranges of temperature, pressure and composition. The simultaneously optimised equations 
fulfil the advanced technical demands on the accuracy of equations of state for the secondary 

4.8   The Equations of State for the Main Natural Gas Components 



34 4   Equations of State for Pure Substances

alkanes and further secondary natural gas components considered in the mixture model. 
Hence, these equations are used for the normal alkanes from propane to n-octane, for 
isobutane and isopentane, and for oxygen and argon. The uncertainties of the equations 
regarding different thermodynamic properties are summarised in Table 4.4. 

Table 4.4 Uncertainties of the equations of state for propane, n-butane, isobutane, n-pentane, 
isopentane, n-hexane, n-heptane, n-octane, oxygen, and argon with regard to different 
thermodynamic properties 

Pressure range Uncertainty in 
( , )T p w T p( , )  c T pp( , )  p Ts( )  ( )T ( )T

p  30 MPaa 0.2%b (1 – 2)%c (1 – 2)%c 0.2%d 0.2% 0.4%d,e

p  30 MPaf 0.5% 2% 2% – – – 
a Larger uncertainties are to be expected in the extended critical region. 
b In the extended critical region, p p  is used instead of .
c 1% at gaseous and gas-like supercritical states, 2% at liquid and liquid-like supercritical states. 
d Larger relative uncertainties have to be tolerated for small vapour pressures and saturated vapour

densities.
e Combination of the uncertainties of the gas densities and vapour pressures; experimental data of this 

accuracy are available for only a few substances. 
f States at pressures p  100 MPa are not considered due to their limited technical relevance. 

The selected data sets for the development of the equations contained all of reliable 
experimental thermodynamic property data that were available for the corresponding fluids at 
the time the equations were developed. Data at pressures above 100 MPa were not used due to 
their limited technical relevance. The equations have the following further characteristics in 
common:

On average, the new equations are far superior to older technical equations of state, in 
many cases their performance comes close to the performance of typical reference 
equations of state.

The equations are valid over wide ranges of temperature and at pressures up to 100 MPa 
(see Table 4.2). 

The extrapolation to temperatures and pressures beyond the range of validity yields 
reasonable results (see Sec. 4.11.2). 

Further details concerning the development of the new class of accurate technical equations of 
state, which were used in this work for the equations of many secondary natural gas 
components, are given in Span and Wagner (2003a,b) and Span (2000b).  



35

4.10 Development of the New Equations of State for Hydrogen, 
Carbon Monoxide, Water, and Helium 

To fulfil the demands mentioned above on the structure and accuracy of the new equation of 
state for natural gases and other mixtures, similar to the equations developed by Klimeck 
(2000) for the main natural gas components (see Sec. 4.8), new equations of state for 
hydrogen21, carbon monoxide, water, and helium22 were developed prior to the development 
of the mixture model.  

The recommended reference equation of state for water is the IAPWS-95 formulation of 
Wagner and Pruß (2002) (see Table 4.1). This reference formulation is explicit in the 
Helmholtz free energy. The equation consists of a complex structure combining 56 terms of 
four different functional forms. McCarty and Arp (1990) developed a wide ranging equation 
of state for helium, and McCarty (1989) reported an equation of state for carbon monoxide. 
Younglove (1982) published an equation for parahydrogen which can easily be transformed to 
be used for hydrogen as well. These pressure explicit equations for helium, carbon monoxide, 
and hydrogen are based on the well-known modified BWR (mBWR) equations of state which 
use 32 terms. This number of terms is significantly larger than desired for the mixture model.  

The complex structure of these equations of state is not the only reason for the necessity to 
develop new equations. Unlike other equations of state, those of Younglove (1982) and 
McCarty and Arp (1990) for hydrogen and helium show a physically incorrect behaviour in 
the liquid phase and liquid-like supercritical region at very high densities. As shown in the 
pressure-density plot for helium in Fig. 4.3, the shapes of the isotherms calculated from the 
equation of state of McCarty and Arp (1990) pass through maximum values for temperatures 
T Tt , whereas the isotherms calculated from the new equation for helium developed in this 
work continuously increase. A similar plot can be shown for hydrogen as well.

In general, a physically correct behaviour, even at the comparatively low absolute 
temperatures which occur in the sub- and supercritical regions of hydrogen and helium 
because of their low critical temperatures, is important for the developed mixture model due 
to the following reasons: 

As explained in Sec. 4.8, the reduced temperature range 1 2 18. .T Tc  corresponds to the 
region with the highest demands on the accuracy in the description of the thermodynamic 

                                                
21  Under normal conditions hydrogen is a mixture of two different kinds of molecules, namely ortho- 

and parahydrogen. At room temperature, hydrogen is composed of about 75% of ortho- and 25% of 
parahydrogen. This is the so-called “normal” hydrogen (n-hydrogen). The equilibrium ratio of these 
two forms depends on temperature. At low temperatures (around the boiling point), the equilibrium 
state is comprised almost entirely of parahydrogen. In this work, the term “hydrogen” represents 
equilibrium hydrogen. The experimental data used for the development of the equation correspond 
to equilibrium hydrogen and parahydrogen (e.g., for saturated liquid densities). 

22  Represents helium-4. 

4.10   Development of the New Equations of State for... 
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properties of typical natural gas mixtures. Therefore, in this reduced range, even the 
equations for the minor and trace components23 of natural gases have to contribute 
reasonably to the Helmholtz free energy of the mixture. 

The mixture model should yield accurate results in the extended fluid region. A wrong 
behaviour in the liquid phase of any pure component would adversely affect the 
description of the properties of mixtures in this region. The property calculations for 
mixtures of unusual composition would return false solutions as well.  

Incorrect physical behaviour at high reduced densities would result in a poor extrapolation 
behaviour of the total mixture model.  

Correct physical behaviour is important for property calculations in any region of the fluid 
surface, as algorithms for stability analysis and phase equilibrium calculations frequently 
need calculations in fluid regions and for mixture compositions which are not related to the 
desired fluid phase.

Fig. 4.3 Pressure-density diagram for helium showing isotherms at temperatures ranging from 2.2 K 
to 400 K calculated from the equation of state developed in this work (see text) and the 
equation of state of McCarty and Arp (1990). 

                                                
23  For instance, typical natural gases contain less than 0.1 mole-% of helium. 
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Similar to the simultaneously optimised equations of Span and Wagner (2003b), the 
development of the new equations of state for hydrogen, carbon monoxide, water, and helium 
had to fulfil the advanced demands on the accuracy of equations for technical applications.  

Unfortunately, for hydrogen and helium, the data situation for reduced temperatures T Tc 3
is rather poor as most of the available experimental data were measured at temperatures from 
100 K to 400 K, which correspond to comparatively high reduced temperatures of T Tc 3
for hydrogen and T Tc 20 for helium24. To overcome these additional difficulties, selected 
experimental data along with physically reasonable data calculated from the existing 
equations of state and of auxiliary correlation equations for the p T relation in the liquid 
phase and liquid-like supercritical region were used to optimise the structures of the equations 
and for fitting the coefficients. For the new equation of state for water, no experimental 
information was used. Similar to the IAPWS-IF97 formulation of Wagner et al. (2000), the 
new equation for water is based only on data for thermal and caloric properties calculated 
from the corresponding reference equation of Wagner and Pruß (2002). In contrast to the 
individually optimised structures of the equations for hydrogen, water, and helium, the new 
equation for carbon monoxide is based on the simultaneously optimised structure for non- and 
weakly polar substances developed by Span and Wagner (2003b). Thus, only the coefficients 
of the equation were fitted to selected experimental data and data calculated from the equation 
of McCarty (1989). The experimental data sets used for the development and evaluation of 
the new equations of state are not given here. 

In general, the equations for hydrogen, carbon monoxide, water, and helium developed in this 
work have the following further characteristics in common: 

The new equations of state for hydrogen, water, and helium were developed by using 
multi-property fitting and optimisation methods described in Secs. 4.4 and 4.5. They have 
individually optimised structures with 12 to 16 terms. The equation for carbon monoxide is 
based on the simultaneously optimised structure for non- and weakly polar substances of 
Span and Wagner (2003b) and consists of 12 terms.  

The equations are valid over wide ranges of temperature and at pressures up to 100 MPa. 
The equation for hydrogen is valid for pressures up to 300 MPa (see Table 4.2). 

In the supercritical region, the new equations of state for hydrogen, carbon monoxide, and 
helium achieve a similar or even better description of the thermodynamic properties 
compared to the existing mBWR equations of state. At supercritical temperatures, the 
uncertainty of the new equations is, on average and conservatively estimated, 0.2% in 
density at pressures up to 30 MPa and less than 0.5% at higher pressures. In general, higher 
uncertainties have to be tolerated in the liquid phase and for other thermodynamic 
properties. For hydrogen, the uncertainty in density at pressures p  30 MPa is less than 

                                                
24  Usually, equations of state cover reduced temperatures T T/ c 3 . 
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0.2% over the temperature range 65 K T  270 K and less than 0.1% at temperatures 
T  270 K. At pressures p  30 MPa, the uncertainty in density is less than (0.2 – 0.3)%.  

The equations behave reasonably in regions characterised solely by poor data. 

The extrapolation to temperatures and pressures beyond the range of validity yields 
reasonable results (see Sec. 4.11.2). 

Fig. 4.4 Percentage density deviations of selected experimental p T data for hydrogen from values 
calculated from the new equation of state, see text. Values calculated from the equation of 
state of Younglove (1982) are plotted for comparison. Bu: Burnett apparatus, Op: optical 
interferometry method. 

To exemplify the capabilities of the new equations of state, comparisons between selected 
p T data and values calculated from the new equation of state for hydrogen are shown in 
Fig. 4.4. The most accurate data are those measured by Jaeschke et al. [Ruhrgas (1990), Bu, 
and Ruhrgas (1990), Op] over the temperature range from 273 K to 353 K and at pressures 
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p  28 MPa. The new equation of state represents these data to within their experimental 
uncertainty, which is approximately 0.05% in density. All other reliable data are reproduced 
with deviations of less than (0.1 – 0.2)% at pressures up to 120 MPa. The equation of state 
developed by Younglove (1982) deviates significantly from the measured data by up to 1%
in the upper temperature range at pressures above 120 MPa, which is, however, outside the 
range of validity of this equation. At lower temperatures (T  200 K) and elevated pressures, 
the equation of Younglove (1982) shows systematically increasing deviations from the new 
equation of state reaching approximately +3% at 300 MPa and T = 100 K. These deviations 
further increase at temperatures below 100 K. It can be shown that the reason for this 
behaviour is the physically incorrect description of the liquid-like supercritical phase as 
described above. A similar behaviour is observed for the equation of McCarty and Arp (1990) 
for helium.  

As a result of the investigations concerning the data situation and the existing equations of 
state for hydrogen and helium, the development of new reference equations of state along 
with new measurements using state-of-the-art experimental techniques is strongly 
recommended for both substances25.

4.11 Extrapolation Behaviour 

The range of validity of an empirical equation of state is typically determined by the overall 
temperature and pressure ranges of the experimental data used for the development and 
evaluation of the equation. Usually, when referring to extrapolation, the equation of state 
should show reasonable behaviour at temperatures and pressures outside of the range of 
validity (i.e. at temperatures and pressures higher than the maximum limits) (see Sec. 4.11.2).  

4.11.1 The Behaviour of the Equation of State for Carbon Dioxide at 
Reduced Temperatures (T /Tc) < (Tt /Tc)

For most equations of state the range of validity covers temperatures from the triple point or 
melting line of the respective substance up to a certain maximum value (see Table 4.2). With 
the exception of carbon dioxide, the reduced triple point temperature T Tt c  ranges from 0.3 to 
0.5 for the components considered in the mixture model. This range is in agreement with the 
minimum reduced temperatures that can occur in mixture calculations26.

                                                
25  For example, when considering the use of hydrogen as an alternative energy source, the liquefaction 

of hydrogen for storage and for easier transportation will play an important role in a future 
hydrogen economy. The development of improved liquefaction processes will require an accurate 
description of various thermodynamic properties of hydrogen as well as of helium and mixtures 
containing helium, which can be used as refrigerants in such processes. 

26  Most of the pure substance equations of state used in the mixture model are based on a 
simultaneously optimised structure which was established by the use of experimental data covering 
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Since the triple point temperature of carbon dioxide Tt  = 216.5915 K [Duschek et al. (1990)] 
is comparatively high, the fluid surface is limited by a reduced temperature T Tc 0 712. . In 
order to be able to calculate thermodynamic properties of natural gases and other mixtures at 
lower reduced temperatures, reasonable behaviour of the equation for carbon dioxide at 
reduced temperatures T Tc 0 712.  is required. Therefore, over the temperature range from 
90 K to 216 K, artificial data were used for the development of the new equation of state [see 
Klimeck (2000) and Klimeck et al. (1999)]. These data were calculated from the equation of 
state for the refrigerant R-22 of Marx et al. (1992) by means of a simple corresponding states 
similarity. In this way, the equation for carbon dioxide shows reasonable behaviour of down 
to a temperature of 90 K27, which corresponds to a reduced temperature of 0.296. 

4.11.2 The Behaviour of the Equations of State at Temperatures and 
Pressures Beyond the Range of Validity 

The range of validity of an empirical equation of state is typically limited by the temperature 
and pressure ranges which are covered by reliable experimental data used for the development 
and evaluation of the equation. Modern multi-parameter equations of state are designed to 
behave reasonably far beyond this range (at higher temperatures and pressures). Investigations 
on the extrapolation behaviour of empirical equations of state carried out by Span and Wagner 
(1997) have shown that plots of certain characteristic curves, the so-called “ideal curves”, are 
useful for the assessment of the extrapolation behaviour of an equation of state. Ideal curves 
are curves along which one property of a real fluid is equal to the corresponding property of 
the ideal gas at the same temperature and density. These characteristic curves are commonly 
derived from the compression factor Z p RTa f  and its derivatives. The characteristic 
curves are

the ideal curve Z 1, (4.28) 

the Boyle curve Z Ta f 0, (4.29) 

the Joule-Thomson inversion curve Z T p 0, (4.30) 

and the Joule inversion curve Z T 0 . (4.31) 

Regular shapes of the curves, as shown in Fig. 4.5, and their values at characteristic points28,
e.g. the reduced temperature at which a curve begins (at zero pressure) and the reduced 

                                                                                                                                                        
reduced temperatures T T/ .c 0 3. Due to this reason, even substances with a reduced triple point 
temperature T Tt c/ .0 3 can be extrapolated down to lower temperatures in a reasonable way. 

27  The range of validity of the new equation of state for carbon dioxide is certainly restricted to 
temperatures T Tt . Data calculated in the “pseudo-fluid” region do not have any physical meaning 
for the pure substance. 

28  The temperature at which the Boyle and ideal curves cross the zero pressure line is known as the 
Boyle temperature, or the temperature at which the second virial coefficient is zero. The point at 
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temperature at which a curve passes through a maximum value, are important criteria to 
obtain reasonable extrapolation behaviour of an equation of state. 

Figure 4.5 shows a plot of the ideal curves calculated from the equations of state for methane, 
n-hexane, and hydrogen, each representing one exemplary equation out of the different 
classes of equations used for the mixture model. The three equations show reasonable plots of 
the four ideal curves defined in Eqs. (4.28) – (4.31), indicating that extrapolation beyond their 
ranges of validity is possible. The characteristic points at which the ideal curves cross the zero 
pressure line are in agreement with the values determined from universal theories [see Span 
and Wagner (1997)]. 

Fig. 4.5 The so-called ideal curves in a double logarithmic p p/ c  vs T T/ c  diagram as calculated 
from the equations of state for methane, n-hexane, and hydrogen (see Secs. 4.8 – 4.10), 
each representing one exemplary equation out of the different classes of equations used for 
the developed mixture model; for the definition of these curves see Eqs. (4.28) – (4.31). 
The plotted phase boundaries correspond to those of methane. The area marked in gray 
corresponds to the region where the equation of state for methane was fitted to 
experimental data. 

                                                                                                                                                        
zero pressure along the Joule inversion curve corresponds to the temperature at which the second 
virial coefficient is at a maximum.  

4.11   Extrapolation Behaviour 
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Plots with a similar representation of the ideal curves can also be calculated from the 
equations of state for the other main and secondary natural gas components. The new 
equation for carbon dioxide shows similar shapes of the Boyle, the ideal, and the Joule-
Thomson inversion curves. For reduced temperatures T Tc 10, the Joule inversion curve 
shows a shape that is in accordance with the theoretical predictions, but does not cross the 
zero pressure line29. However, this behaviour does not affect the suitability of the new 
equation for carbon dioxide, since reduced temperatures T Tc 10 are outside the range of 
interest of the developed mixture model.  

                                                
29  In order for the Joule inversion curve to extend to zero pressure, the second virial coefficient must 

pass through a maximum value, a criterion which is not followed by all equations of state as proven 
by Span and Wagner (1997) for several reference equations of state.
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5 Equations of State for Mixtures 

Recent equations of state for mixtures are based on multi-fluid approximations and are 
explicit in the Helmholtz free energy. The models use equations of state in the form of 
fundamental equations for each considered mixture component along with further correlation 
equations to take into account the residual mixture behaviour. The models enable the accurate 
description of the thermodynamic properties of mixtures in the extended fluid region for wide 
ranges of temperature, pressure, and composition. For a pure component the models default to 
the accurate fundamental equation for the respective substance. The basis for the development 
and evaluation of such empirical equations of state for mixtures are experimental data (see 
Chap. 6). 

Table 5.1 Overview of existing mixture models based on multi-fluid approximations explicit in 
the Helmholtz free energy in the order of the year of publication 

Reference Type of mixture Number of 
  components 

Tillner-Roth (1993) Binary mixture R-152a–R-134a 2 
Lemmon (1996)a Mixtures of polar and nonpolar substancesb 13 
Tillner-Roth & Friend (1998) Binary mixture water–ammonia 2 
Tillner-Roth et al. (1998) Hydrofluorocarbon refrigerant mixturesc 4 
Lemmon et al. (2000) Dry air and similar mixtures 3 
Klimeck (2000) Natural gases and similar mixtures 7 
Miyamoto & Watanabe (2003) Mixtures of hydrocarbon refrigerantsd 3 
Lemmon & Jacobsen (2004) Hydrofluorocarbon refrigerant mixturese 5 
This work Natural gases, similar gases, and other mixtures 18 
a Revised by Lemmon & Jacobsen (1999) for mixture components relevant to natural gas. 
b Considered components include substances relevant to natural gas, dry air, and refrigerants. 
c Binary and ternary mixtures of R-32, R-125, R-134a, and R-143a. 
d Binary and ternary mixtures of propane, n-butane, and isobutane. 
e Binary and ternary mixtures of R-32, R-125, R-134a, R-143a, and R-152a. 

The first models of this type were developed independently by Tillner-Roth (1993) for the 
binary refrigerant mixture R-152a–R-134a and by Lemmon (1996) for mixtures of polar and 
nonpolar substances including natural gas components. Based on the structures of these 
models, further equations of state for the binary mixture water–ammonia [Tillner-Roth and 
Friend (1998)], dry air and similar mixtures [Lemmon et al. (2000)], mixtures of hydrocarbon 
refrigerants [Miyamoto and Watanabe (2003)], and hydrofluorocarbon refrigerant mixtures 
[Lemmon and Jacobsen (2004), Tillner-Roth et al. (1998)] have been reported within the past 
eight years as shown in Table 5.1. Detailed descriptions of the general structures of these 
models are given in Tillner-Roth (1998) and Lemmon and Tillner-Roth (1999). Lemmon and 
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Jacobsen (1999) revised the model of Lemmon (1996) for the mixture components relevant to 
this work. Hence, the equation of Lemmon and Jacobsen (1999) is used for comparisons.  

Tillner-Roth (1993) and Tillner-Roth and Friend (1998) developed equations for individual 
binary mixtures. Based on the description of the binary subsystems, different models describe 
the behaviour of ternary mixtures only. Comparisons between ternary data and values 
calculated from these equations of state are shown by the respective authors [e.g. Lemmon et
al. (2000), Miyamoto and Watanabe (2003), Lemmon and Jacobsen (2004)]. The nearly 
identical models of Lemmon (1996) and Lemmon and Jacobsen (1999) enable the description 
of multi-component mixtures and contain formulations for mixtures of natural gas 
components.  

As mentioned in Chap. 2, the new equation of state for natural gases and other mixtures of 
natural gas components developed in this work results from the continuation of the preceding 
work of Klimeck (2000), who established the essential tools required for the development of 
such multi-fluid mixture models. Based on these tools, a preliminary equation of state for 
natural gas mixtures consisting of up to seven main and secondary natural gas components, 
which is also used for comparisons in this work, was developed by Klimeck (2000) to 
demonstrate the predictive capability of such a mixture approach.  

5.1 The General Structure of Multi-Fluid Approximations 

The mixture models mentioned above and the new model for natural gases and other mixtures 
developed in this work are fundamental equations explicit in the Helmholtz free energy a with 
the independent mixture variables density , temperature T, and molar composition x . Similar 
to fundamental equations for pure substances (see Chap. 4), the function a T x( , , ) is split into 
a part ao , which represents the properties of ideal gas mixtures at a given , T, and x , and a 
part ar , which takes into account the residual mixture behaviour: 

a T x a T x a T x( , , ) ( , , ) ( , , )o r . (5.1) 

Using the Helmholtz free energy in its dimensionless form a RT , Eq. (5.1) reads30

( , , ) ( , , ) ( , , )x T x xo r , (5.2) 

where  is the reduced mixture density and  is the inverse reduced mixture temperature 
according to  

r    and T Tr  (5.3) 

with r  and Tr  being the composition-dependent reducing functions for the mixture density 
and temperature: 

30  Note that o does not depend on  and  of the mixture, but on  and T.
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r r ( )x , (5.4) 

T T xr r ( ) . (5.5) 

The dimensionless form of the Helmholtz free energy for the ideal gas mixture o is given by 

o
o
o( , , ) ( , ) lnT x x T xi i i

i

N

1
, (5.6) 

where N is the number of components in the mixture, o
o

i  is the dimensionless form of the 
Helmholtz free energy in the ideal-gas state of component i [see Sec. 4.3 and Eq. (7.5)] and 
the xi  are the mole fractions of the mixture constituents. The term x xi iln  accounts for the 
entropy of mixing. 

In a multi-fluid approximation, the residual part of the reduced Helmholtz free energy of the 
mixture r  is given as follows: 

r
o
r r( , , ) ( , ) ( , , )x x xi i

i

N

1
, (5.7) 

where o
r
i  is the residual part of the reduced Helmholtz free energy of component i [see 

Sec. 4.7 and Eq. (7.7)] and r  is the so-called departure function. The reduced residual 
Helmholtz free energy of each component depend on the reduced variables  and  of the 
mixture; the departure function additionally depends on the mixture composition x .

This general structure is used by the models of Tillner-Roth (1993), Lemmon (1996), and 
Lemmon and Jacobsen (1999), as well as by all models based on a multi-fluid approximation 
which intend to achieve an accurate description of the thermodynamic properties of nonideal 
mixtures. 

According to Eq. (5.7), the residual part of the reduced Helmholtz free energy of the mixture 
r  is composed of two different parts:  

the linear combination of the residual parts of all considered mixture components and 

the departure function. 

In general, the contribution of the departure function to the reduced residual Helmholtz free 
energy of the mixture is inferior to the contribution of the equations for the pure components.  

Summarised, the new equation of state for natural gases and other mixtures based on a multi-
fluid approximation consists of  

pure substance equations for all considered mixture components, 

composition-dependent reducing functions r ( )x  and T xr ( )  for the mixture density and 
temperature, and 

a departure function r  depending on the reduced mixture density, the inverse reduced 
mixture temperature, and the mixture composition. 

5.1   The General Structure of Multi-Fluid Approximations 
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The reducing functions and the departure function are developed based on experimental 
mixture data. The following two sections describe the mathematical forms commonly used for 
the reducing functions and the different existing approaches in the development of departure 
functions. These sections also present the functions used for the new mixture model. 

5.2 Reducing Functions for Density and Temperature 

The reducing functions are used to determine the reduced variables for the mixture density 
and temperature according to Eq. (5.3). The use of correlation equations with adjustable 
parameters, fitted to mixture data, is recommended for the reducing functions as shown by the 
investigations of Klimeck (2000) and Kunz (2000). The applicability of a mathematical form 
for such correlation equations depends on certain conditions, for instance: 

For xi 0 the reducing functions have to smoothly connect to the reducing parameters of 
the respective substance (i.e. the critical parameters). This is mandatory for the residual 
parts of the reduced Helmholtz free energy of the pure components. 

The reducing functions have to allow for the description of both binary mixtures and multi-
component mixtures, as the reducing functions of the new equation of state for natural 
gases and other mixtures are adjusted to data of binary mixtures and, therefore, contain 
binary parameters. 

The mathematical form of the reducing functions has to be chosen in such a way that a 
reasonable conversion of the parameters is achieved upon rearranging the indices of the 
mixture components31.

The use of a functional form that is flexible enough to describe both symmetric and 
asymmetric shapes respecting equimolar composition (see Fig. 5.1) is required. 

The mathematical characteristics of the used reducing functions have to assure physically 
reasonable values for derived thermodynamic properties and their derivatives with respect 
to mixture pressure, density, temperature, and composition. 

The mathematical structures used for the reducing functions of the models reported in the 
literature differ. Tillner-Roth (1993) used a quadratic structure for the description of binary 
mixtures according to 

Y x x Y x Y x x Y
Yr c c( ) , , ,1

2
1 2

2
2 2 2 122 1d i , (5.8) 

31  For instance, a parameter ij  with ij ji  would be desirable. When rearranging the indices in 
the reducing functions of Lemmon (1996), the reformulation of the structure of the functions is 
required. This characteristic is problematical for the user and, furthermore, not reasonable under 
theoretical aspects. 
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where Y corresponds to either the molar volume v or the temperature T. Consequently, the 
reducing function Yr  corresponds to either the reciprocal of the reducing function for the 
mixture density 1 r  or the reducing function for the mixture temperature Tr . Lemmon (1996) 
used reducing functions based on a linear structure for the description of multi-component 
mixtures: 

Y x x Y x xi i
i

N

i j Y ij
j i

N

i

N
Y ij

r c( ) , ,
,

1 11

1
. (5.9) 

When rearranging the indices of the mixture components, the problems mentioned above 
occur. Aside from the adjustable parameter , both mathematical forms use an adjustable 
exponent , which is the exponent of a mole fraction of a certain mixture component, to 
realise asymmetric shapes of the functions respecting equimolar composition. In general, the 
use of noninteger exponents for composition variables (i.e. the mole fractions of the mixture 
components) of mixing rules is problematic [see Mathias et al. (1991)]. To avoid infinite 
slopes of the reducing functions for xi 0 (i.e. small mole fractions of one component in a 
binary mixture and of one or several components in a multi-component mixture such as 
natural gas),  must never be smaller than zero for Eq. (5.8) and always be greater than unity 
for Eq. (5.9). Otherwise, in phase equilibrium calculations, the use of such exponents would 
lead to, for example, infinite fugacities along with physically wrong derivatives of these with 
respect to temperature, pressure, and composition. Therefore, reducing functions that contain 
such exponents should not be used in formulations for multi-component mixtures. 
Equations (5.8) and (5.9) are equivalent when the parameter  is not used. 

The problem described above arises for the binary mixture carbon dioxide–propane in the 
model of Lemmon (1996). Thus, Lemmon and Jacobsen (1999) introduced a second exponent 
in Eq. (5.9) which is the exponent of the second mole fraction. In recent models reported for 
binary and ternary mixtures, no asymmetric behaviour of the reducing functions is considered 
by the authors [e.g. Lemmon et al. (2000), Miyamoto and Watanabe (2003), Lemmon and 
Jacobsen (2004)]. Such a feature is not necessarily needed for systems with small mixing 
effects. However, the use of asymmetric shapes significantly improves the accuracy of a 
fundamental equation in the description of the thermodynamic properties of mixtures, 
especially for well-measured mixtures.  

Therefore, Klimeck (2000) introduced a new class of reducing functions containing an 
asymmetric expression proposed by Tillner-Roth (1998) which overcomes the dilemma 
mentioned above. The adjustable parameters of the new reducing functions, which are also 
used for the mixture model developed in this work, are not restricted to certain ranges of 
value (i.e. they can be negative or positive). The respective reducing functions for the mixture 
density and temperature can be written as 

5.2   Reducing Functions for Density and Temperature 
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1 1
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1 1
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and
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i j
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r c c( ) , ,
,

, ,
.
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0 5

11
c h . (5.11) 

These functions are based on quadratic mixing rules and with that they are reasonably 
connected to physically well-founded mixing rules. The two adjustable parameters in the 
reducing functions consider the deviation between the behaviour of the real mixture and the 
one resulting from the combining rules for the critical parameters of the pure components. 
The two binary parameters  and  [ v ij,  and v ij,  in Eq. (5.10), and T ij,  and T ij,  in 
Eq. (5.11)] allow for arbitrary symmetric and asymmetric shapes of the reducing functions 
respecting equimolar composition as exemplified in Fig. 5.1. The asymmetric composition 
dependence is based on the approach for the excess Gibbs function of van Laar: 

G x x A B
A x B x

E
1 2

1 2
; (5.12) 

see Tillner-Roth (1998) for further details. The numerator x xi j  in the reducing functions 
[Eqs. (5.10) and (5.11)] only affects multi-component mixtures and ensures that terms with 
identical indices smoothly connect to the product x xi i  for which v ii T ii, , 1. 

Fig. 5.1 Different symmetric and asymmetric shapes respecting equimolar composition of the 
reducing functions used for the new mixture model for selected values of the binary 
parameters  and  in Eqs. (5.10) and (5.11). 
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In contrast to Eqs. (5.8) and (5.9), the reducing functions according to Eqs. (5.10) and (5.11) 
ensure physically reasonable shapes of the functions for any value of their parameters. To 
ensure that the numbering of mole fractions is symmetric, the following relations have to be 
obeyed:

v ij v ji, , , T ij T ji, ,    and v ij v ji, ,1 , T ij T ji, ,1 . (5.13) 

When all binary parameters of Eqs. (5.10) and (5.11) are set to unity, the reducing functions 
with adjustable parameters turn into a quadratic mixing rule using the respective combining 
rules for the critical parameters of the pure components according to Lorentz and Berthelot: 

1 1
8

1 1
1 3 1 3

3

c c c, ,
/

,
/

ij i j

F
HG

I
KJ , (5.14) 

T T Tij i jc c c, , ,
.c h0 5

. (5.15) 

Therefore, the mixture model developed in this work can easily be extended to components 
for which poor or even no experimental information is available for fitting the binary 
parameters of the reducing functions. Moreover, other combining rules can be used instead of 
Eqs. (5.14) and (5.15) to achieve different shapes of the reducing functions. The use, for 
example, of the combining rule  

T T Tij i jc c c, , ,
1
2
c h (5.16) 

in Eq. (5.11) results in a linear reducing function T x T x Tr c c1 1 2 2, ,  for a binary mixture. 
Linear combining rules according to Eq. (5.16) are used in the new mixture model for certain 
binary subsystems which are characterised by poor data32 (see Sec. 7.10). The linear 
combining rule is applied for such binary systems through the use of values for the parameters 

v ij,  and T ij,  calculated from the following conversions: 

v ij
i j

i j
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 (5.17) 

with v ij,  and T ij,  set to one. Using the results of Eq. (5.17) instead of unity, no additional 
numerical effort is required as the structure of Eqs. (5.10) and (5.11) is maintained for all 
binary subsystems. The use of different combining rules is superfluous when data are used to 
adjust the binary parameters. 

                                                
32  For example, detailed investigations concerning the use of different combining rules performed in 

this work showed that linear combining rules are, in general, more suitable for the description of the 
thermodynamic properties of binary hydrocarbon mixtures than those of Lorentz and Berthelot. 

5.2   Reducing Functions for Density and Temperature 
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The predictive capability of a multi-fluid approximation based on accurate equations of state 
in the form of fundamental equations for each mixture component and the new reducing 
functions given above was investigated in detail for the description of various thermodynamic 
properties in this work and preceding studies [Klimeck (2000), Kunz (2000)]. These 
investigations proved the suitability of the new reducing functions according to Eqs. (5.10) 
and (5.11) for the development of the new equation of state for natural gases and other 
mixtures.  

5.2.1 The Invariance Condition and Alternative Reducing Functions 

Aside from the accurate fundamental equations for the mixture components, the new wide-
range equation of state for natural gases, similar gases, and other mixtures presented in this 
work is based on correlation equations developed for binary mixtures. The behaviour of 
multi-component mixtures depends on the form of the reducing functions for the mixture 
density and temperature according to Eqs. (5.10) and (5.11) (double summation over all 
binary subsystems). The restriction to binary reducing equations and the simple extension to 
multi-component mixtures leads, however, to a loss in accuracy for the prediction of the 
thermodynamic properties of multi-component mixtures.  

The restriction to binary reducing equations is unavoidable due to the comparatively poor data 
available for ternary, quaternary, and other multi-component mixtures. Consequently, a more 
accurate description of the properties of multi-component mixtures can only be realised by 
minimising the loss in accuracy when extending from binary to multi-component mixtures. In 
mixture models based on multi-fluid approximations, the mathematical structure of the 
reducing functions has a large influence on this loss in accuracy.  

The suitability of a mathematical structure for the extension from binary to multi-component 
mixtures is connected to certain physically founded conditions. Such a condition, namely the 
invariance condition, was reported by Michelsen and Kistenmacher (1990)33 [see also Mathias 
et al. (1991) and Avlonitis et al. (1994)]. The authors state that mixture parameters calculated 
from mixing rules have to be invariant concerning the partitioning of a component into a 
number of identical subcomponents. This requirement must also be valid for the composition-
dependent parameters of equations of state for mixtures. The invariance condition is, 
however, not fulfilled for the reducing functions used in the new mixture model and those of 
all other existing models based on multi-fluid approximations which contain expressions for 
modelling asymmetric shapes with respect to the equimolar composition.  

A solution to this problem is based on a mixing rule suggested by Mathias et al. (1991) and 
was proposed by Klimeck (2000) for the reducing functions of multi-fluid approximations. 

                                                
33  Aside from the invariance condition, an additional problem, which is called the “dilution” effect, 

was investigated by the authors and for the mixture model developed in this work (see Sec. 7.12.2). 
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Taking into account the structure of this mixing rule, the corresponding reducing functions for 
density and temperature were introduced in this work for the development of a second 
(alternative) mixture model according to 

Y x x x Y x x Yi j Y ij ij
j

N

i
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i j Y ij ij
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1
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1
, (5.18) 

where Y corresponds to either the molar volume v or the temperature T, and  and  are 
adjustable binary parameters. The very flexible structure of Eq. (5.18) enables asymmetric 
shapes and the values calculated for Y xr ( )  are invariant when a mixture component is divided 
in two or more pseudo-components. Further details on the use of these alternative reducing 
functions and the developed alternative mixture model are provided in Sec. 7.12.

According to Michelsen and Kistenmacher (1990), these theoretical considerations are of 
practical relevance concerning, for example, mixtures containing very similar components. 
Therefore, detailed investigations of the problem of invariance regarding the new mixture 
model along with the suitability of the alternative reducing functions with respect to their use 
in mixture models based on multi-fluid approximations were performed in this work. The 
ideas and conclusions of these investigations are given in Sec. 7.12.4.

5.3 Departure Functions 

The concept of a departure function r ( , , )x  for the description of the behaviour of 
nonideal mixtures according to Eq. (5.7) was independently developed by Tillner-Roth (1993) 
and Lemmon (1996). The purpose of this function is to further improve the accuracy of the 
multi-fluid mixture model in the description of thermodynamic properties when fitting the 
parameters of the reducing functions to accurate experimental data is not sufficient.  

As mentioned above, the departure function is in general of minor importance for the residual 
behaviour of the mixture as it only describes an additional small residual deviation to the real 
mixture behaviour. The development of such a function is associated with considerable effort 
which is, however, necessary to fulfil the high demands on the accuracy of the new mixture 
model in the description of the thermodynamic properties of natural gases and other mixtures. 

5.3.1 Binary Specific Departure Functions 

Originally, the departure function developed by Tillner-Roth (1993) was designed to describe 
the behaviour of individual binary mixtures for which a large amount of accurate 
experimental data are available. Such a binary specific departure function can be written in 
the form 

r r( , , ) ( , ) ( , )x f x x1 2 12 . (5.19) 

5.2   Reducing Functions for Density and Temperature 
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In Eq. (5.19) the composition dependence in the form of the factor f  is clearly separated 
from a function only depending on the reduced mixture density  and the inverse reduced 
mixture temperature . For a given composition dependence, the structure of the function 

12
r ( , ) which yields the best representation of the thermodynamic properties of the mixture 

can be determined through the use of suitable structure optimisation procedures (see 
Sec. 4.4.2). The composition-dependent factor f  has to equal zero for a pure component. 

5.3.2 Generalised Departure Functions 

The model of Lemmon and Jacobsen (1999) was developed to describe the thermodynamic 
properties of multi-component mixtures. To achieve a sufficiently accurate representation, 
Lemmon and Jacobsen (1999) also used a departure function. The structure of this function is 
similar to the one of the binary specific function of Tillner-Roth (1993), but generalised for all 
considered binary systems in order to achieve an accurate description for a number of well-
measured mixtures along with mixtures with limited data sets. Such a generalised departure 
function is given by 

r
gen
r( , , ) ( , )x x x Fi j ij

j i

N

i

N

11

1
. (5.20) 

Similar to Eq. (5.19), the composition dependence in Eq. (5.20) is separated from a function 
which only depends on reduced mixture density  and inverse reduced mixture temperature .
This structure can also be determined by using structure-optimisation methods. This structure 
is identical for all binary mixtures according to Eq. (5.20), only the parameter Fij  is binary 
specific. The structure of the composition-dependent factor 

f x x Fi j ij  (5.21) 

does not necessarily have to be a quadratic composition dependence. Under a smooth 
connection to the pure components, any arbitrary structure can be used which may, for 
example, result in asymmetric shapes with respect to the equimolar composition.  

5.3.3 The Departure Functions of the New Mixture Model 

Binary specific and generalised departure functions have their respective advantages and 
disadvantages. In general, binary specific departure functions enable a more accurate 
description of the thermodynamic properties of mixtures than generalised formulations, which 
is an important feature concerning the high demands on the accuracy of the new equation of 
state for natural gases and other mixtures. To develop a binary specific departure function a 
large amount of accurate experimental data of thermal and caloric properties is required. On 
the other hand, generalised departure functions can be used for binary mixtures characterised 
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by poor or limited data. Experimental information for a number of binary mixtures can be 
used for the development of generalised formulations. 

The ideas mentioned above were taken into account for the development of departure 
functions for the new mixture model. The accurate description of binary mixtures consisting 
of the main natural gas components (see Table 4.2) is of fundamental importance for the 
accuracy in the description of thermal and caloric properties of natural gases and similar 
mixtures. Therefore, accurate binary specific departure functions for mixtures of these 
components were developed.  

The data situation for many binary systems does not allow the development of binary specific 
departure functions for these systems. Hence, a generalised departure function was developed. 
Binary mixtures characterised by very limited data or of minor importance regarding the 
composition of natural gases due to the small mole fractions of the respective components can 
be considered without a departure function, i.e. ij

r 0 .  

In the new mixture model for natural gases, similar gases, and other mixtures developed in 
this work, the departure function r  of multi-component mixtures is the sum of all binary 
specific and generalised departure functions of the involved binary subsystems: 

r r( , , ) ( , , )x xij
j i

N

i

N

11

1
 (5.22) 

with

ij i j ij ijx x x Fr r( , , ) ( , ). (5.23) 

The parameter Fij  equals unity for binary specific departure functions and is fitted for binary 
mixtures using a generalised departure function, where ij

r
gen
r . This structure of the 

departure function for the multi-component mixture was firstly used by Klimeck (2000) for 
the preliminary equation of state for natural gases. 

The new equation of state contains a total of seven binary specific departure functions and 
one generalised departure function for eight binary hydrocarbon mixtures (see Table 7.16). 
The functions ij

r ( , ) were developed using procedures based on the fitting and structure-
optimisation methods described in Chap. 4, see also Sec. 5.5. As the mixture model is not 
limited to the number of binary specific and generalised formulations available here, the 
extension of the model by developing further departure functions for, for example, binary 
mixtures of air components and mixtures containing carbon dioxide, is considered for the near 
future (see also Chap. 9). Moreover, the extension of the developed generalised formulation 
for important binary hydrocarbon mixtures by adding further hydrocarbons seems to be 
reasonable. Nevertheless, for natural gases and similar mixtures this will lead to only minor 
revisions as the accuracy of the mixture model presented in this work already fulfils the 
defined requirements (see Chap. 3, Sec. 7.13, and Chap. 8).  

5.3   Departure Functions 
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The considerations presented in this section led to the basic structure of the new equation of 
state for natural gases, similar gases, and other mixtures as a multi-fluid approximation. In 
Sec. 7.1, the exact structure resulting from the investigations of this work is introduced ahead 
of the detailed description of the development of the different binary equations (see 
Sec. 7.10).

The basic structure of the new mixture model agrees with the one for seven natural gas 
components used by Klimeck (2000). But due to physically incorrect behaviour in calculated 
vapour-liquid equilibrium states, a new functional form for ij

r  was introduced in this work 
and all of the binary equations containing a departure function had to be redeveloped (see 
Secs. 7.10 and 7.11) resulting in a completely revised, fundamentally improved formulation. 

5.3.4 Functional Forms for r
ij

Similar to the structure of the residual part of the Helmholtz free energy of a pure substance 
equation of state, the structure of the equation for ij

r ( , ) of a binary specific or generalised 
departure function [see Eq. (5.23)] can be determined by using modern structure-optimisation 
methods (see Chap. 4). A survey of the type of terms used for the departure functions of 
mixture models reported in the literature is given in Table 5.2, see also Table 5.1. 

The departure functions of the mixture models reported in the literature are mostly composed 
of the two basic functional forms, namely the polynomial terms and polynomial terms in 
combination with exponential terms according to Eqs. (4.24) and (4.25), as shown in 
Table 5.2. These functional forms are used in many formulations for the residual Helmholtz 
free energy of modern wide-range pure substance equations of state as described in Sec. 4.6. 
For example, the generalised departure functions developed by Lemmon and Jacobsen (1999) 
and Lemmon et al. (2000) only consist of pure polynomial terms. Lemmon and Jacobsen 
(2004) only used polynomial terms in combination with exponential terms and the departure 
functions developed by Tillner-Roth and Friend (1998) and Klimeck (2000) are composed of 
both functional forms according to 
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Equation (5.24) is of the same structure as the residual part of the dimensionless Helmholtz 
free energy of all pure substance equations of state used for the components considered in the 
developed mixture model [see Eq. (4.27)]. The number of terms used in the reported mixture 
formulations varies from two to 14 (see Table 5.2). Usually, values for the density exponent 
cij k,  of the exponential expression in Eq. (5.24) range from cij k, 1 to cij k, 3 . In the 
preliminary mixture model for natural gases, Klimeck (2000) used density exponents up to 
cij k, 6 along with a bank of terms very similar to the one used for optimising the structure of 
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the new class of pure substance equations of state for the main natural gas components (see 
Sec. 4.8).

The use of such banks of terms for determining the structures of the residual part of the 
Helmholtz free energy of multi-parameter equations of state for pure substances has proven 
worthly for the development of such formulations. Aside from the ordinary polynomial terms, 
the polynomial terms in combination with exponential terms in the extended form (see 
Sec. 4.6.2) are considered to be the standard functional forms of modern wide-range pure 
substance equations of state since Schmidt and Wagner (1985) introduced such exponential 
functions.

Table 5.2 Survey of the type of terms used for the departure functions of existing mixture models 
based on multi-fluid approximations explicit in the Helmholtz free energy 

Reference Type of Number of terms used for Range of 
 departure the departure functions exponent 
 functiona total polynomialb exponentialc cij k,

d

Tillner-Roth (1993) B 5e 3 – – 
Tillner-Roth & Friend (1998) B 14 1 13 1 – 2 
Tillner-Roth et al. (1998) B 6 – 8 1 – 2 4 – 6 1 – 2 
Lemmon & Jacobsen (1999) G 10 10 – – 
Lemmon et al. (2000) G 2 2 – – 
Klimeck (2000) B, G 5 – 9 1 – 3 2 – 7 1 – 6 
Miyamoto & Watanabe (2003) G 4 2 2 1 
Lemmon & Jacobsen (2004) B, G 4 – 8 – 4 – 8 1 – 3 
a “B” and “G” indicate binary specific and generalised departure functions. 
b Number of polynomial terms according to Eq. (4.24). 
c Number of polynomial terms in combination with exponential terms according to Eq. (4.25). 
d Range of values used for the density exponent cij k,  of the exponential expression in Eq. (5.24), i.e. 

of the exponential term exp( ),cij k  [see also Eq. (4.25)]. 
e Two terms of the total number of terms contain logarithmic functions in  and .

Nevertheless, no investigations have been reported yet concerning the suitability of these 
functional forms for mixture models based on multi-fluid approximations. However, it can be 
imagined that a functional form which describes the difference between the ideal and real 
behaviour of a pure fluid, i.e. the residual behaviour including, for example, the vapour-liquid 
equilibrium, is not appropriate for the description of an additional residual deviation in the 
real mixture behaviour as needed for a departure function. Driven by the need for a functional 
term which enables both the accurate description of the thermal and caloric properties of 
binary and multi-component mixtures within the uncertainty of the best measured data and a 
reasonable behaviour of the mixture model in regions characterised by poor data, a 
comprehensive investigation regarding the suitability of exponential functions was performed 
for the first time in this work. As a result of these investigations, a new functional form for 

5.3   Departure Functions 
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use in the bank of terms for the development of departure functions of binary mixtures was 
introduced. This term can be written as  

ij k ij k
d tn eij k ij k ij k ij k ij k ij k

, ,
, , , , , ,r c h c h2

, (5.25) 

where ij k, , ij k, , ij k, , and ij k,  are adjustable parameters used to model the shape of the 
term. Further details and results of the investigations and the manner of use of the new term 
for the mixture model are given in Sec. 7.11. 

5.4 The Calculation of Thermodynamic Properties Derived from the 
Helmholtz Free Energy of Mixture Models Based on Multi-Fluid 
Approximations

The Helmholtz free energy of a mixture as a function of density, temperature, and the mixture 
composition is one of the four fundamental forms of an equation of state. Similar to 
fundamental equations for pure substances, all thermodynamic properties of a mixture can be 
obtained by combining various derivatives of Eq. (5.2). The thermodynamic properties in the 
homogeneous gas, liquid, and supercritical regions of a mixture are related only to derivatives 
with respect to density and temperature. Thus, in the homogeneous region, the same basic 
relations can be applied to both pure substance equations and equations of state for mixtures 
explicit in the Helmholtz free energy (see also Sec. 4.2). The respective derivatives of 
Eq. (5.2) with respect to the reduced variables  and  are, however, much more complex than 
those of Eq. (4.2) for a pure substance, as the mixture model is composed of several different 
correlation equations [see Eqs. (5.3) – (5.7), (5.10), and (5.11)]. In addition, very 
sophisticated derivatives with respect to mixture composition, namely mole numbers ni  and 
mole fractions xi , have to be taken into account for phase equilibrium calculations (see 
Secs. 5.4.1 and 7.3).

For example, in the homogeneous gas, liquid, and supercritical regions, the pressure p, the 
enthalpy h, and the entropy s can be determined from the following equations: 

p x
RT

( , , ) 1 r , (5.26) 

h x
RT

( , , ) 1 o r rc h , (5.27) 

s x
R

( , , ) o r o rc h  (5.28) 

with o and r  according to Eqs. (5.6) and (5.7), and 
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see Table 7.5 for the derivatives of o and r  with respect to the reduced mixture variables 
and  for the new mixture model. Further relations between Eq. (5.2) (and its derivatives) and 
the thermodynamic properties considered in many technical applications are listed in 
Tables 7.1 – 7.3.

To ensure that the mixture is homogeneous, a stability investigation by means of, for 
example, the tangent-plane-distance method [e.g. Michelsen (1982a)], has to be performed. A 
description of the stability analysis procedure applied in this work is given in Sec. 7.5.1. This 
procedure is in general not necessary for the calculation of the thermodynamic properties of 
pure substances due to the existing accurate auxiliary equations for properties on the phase 
boundary (see Sec. 4.2).

As mentioned before, the calculation of phase equilibrium properties of mixtures requires a 
considerably more complex and time-consuming effort compared to pure substances. This 
happens because of the larger number of variables along with the larger number of phase 
equilibrium conditions resulting from this, and because of the very sophisticated derivatives 
with respect to mixture composition. Furthermore, the number of equilibrium phases is 
usually not known in advance. Aside from the ordinary vapour-liquid equilibrium, further 
phase equilibria, such as liquid-liquid, vapour-liquid-liquid, and other multi-phase equilibria, 
may occur when dealing with mixtures. In contrast to the pure substances, in general, no 
accurate auxiliary equations are available to determine the initial estimates required for the 
iterative solution of the resulting set of equations. To verify that the solution for an 
equilibrium mixture is stable, the thermodynamic state function involved in the calculation, 
e.g. the total (or molar) Gibbs free energy of the overall system for a pT flash calculation, has 
to be at its global minimum34. Thus, to ascertain that the derived minimum is the global 
minimum, a stability analysis has to be performed as well. 

5.4.1 The Calculation of Vapour-Liquid Equilibrium Properties 

Thermodynamic equilibrium between two or more coexisting phases exists when neither the 
net flux of heat, momentum, nor material is exchanged across the phase boundary. 
Consequently, temperature, pressure, and the chemical potentials i  of all components i have 
to be equal in all phases. For the common two-phase vapour-liquid equilibrium of a non-

                                                
34  In this context, for instance, the total Gibbs free energy is just the energy of a state point, and the 

overall Gibbs free energy would be the total energy of all the states (phases) in a system. 

5.4   The Calculation of Thermodynamic Properties... 
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reacting mixture consisting of N components, the following phase equilibrium conditions 
must be satisfied: 

equality of temperature T T T , (5.32) 

equality of pressure p p ps , (5.33) 

equality of chemical potentials i i , i = 1, 2, ..., N. (5.34) 

The chemical potential i  equals the partial molar Gibbs free energy gi  of component i and is 
related to the Helmholtz free energy of a mixture according to 

i
i T V n

A
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j

F
HG
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KJ , ,

, (5.35) 

where V is the total volume, neither the molar nor the specific volume, and nj  signifies that 
all mole numbers are held constant except ni . Substituting A nRT  and o r  [see 
Eq. (5.2)] in Eq. (5.35) results in
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The partial derivative of n o with respect to the mole number ni  of component i can be 
determined from Eq. (5.6) resulting in 
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where o
o

o
o

i ia RT  with a Tio
o ( , ) similar to Eq. (4.13). By successively inserting 

Eqs. (5.37) and (5.36) in Eq. (5.34), it finally leads to
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, i = 1, 2, ..., N, (5.38) 

where xi  is the mole fraction of component i in the liquid phase and xi  is the mole fraction of 
component i in the vapour phase. 

For the calculation of phase equilibria, the fugacity fi  and the fugacity coefficient i  of 
component i are often used instead of the chemical potential. Equation (5.34) can then be 
replaced with one of the following equations: 

f fi i , i = 1, 2, ..., N, (5.39) 

i i i ix x , i = 1, 2, ..., N. (5.40) 

The ratio of xi  over xi  is defined as the K-factor of component i:

K x xi i i . (5.41) 

The fugacity fi  and fugacity coefficient i  of component i are related to Eq. (5.2) by 
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For each of the equations describing the material equilibrium [Eqs. (5.34) and  
(5.38) – (5.40)], the determination of the partial derivative  
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is required. From Eq. (5.44) follows that the derivative of r  [see Eq. (5.7)] with respect to 
the mole number ni  of component i has to be calculated at constant temperature T, constant 
volume V, and constant nj  with j i . Although this relation appears to be simple, it is 
difficult to apply as the reduced mixture variables ( )x  and ( )x  of r  also depend on 
the mixture composition. The differential of r ( , , )x  with respect to ni  can be transposed 
into the following equation: 
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with r r ( )x  and T T xr r ( )  according to, for example, Eqs. (5.10) and (5.11). Introducing 
r  and r  according to Eqs. (5.29) and (5.30), and  
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Eq. (5.45) can be rewritten as

5.4   The Calculation of Thermodynamic Properties... 
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The respective derivatives of r  [see Eq. (5.7)] with respect to , , and xi  are given in 
Table 7.5; those of the reducing functions r  and Tr  used for the new mixture model [see 
Eqs. (5.10) and (5.11)] are listed in Table 7.10. Even more complex and sophisticated 
derivatives of Eq. (5.50) with respect to temperature, total volume, composition (ni  and xi), 
and the reduced variables  and  are required for the iterative solution of the phase 
equilibrium conditions for flash, phase envelope, and other advanced phase equilibrium 
calculations (see Sec. 7.3). To enable the development of computing-time saving algorithms, 
all of the derivatives needed for such applications of the mixture model, even the second 
derivatives of r  with respect to composition, were determined analytically in this work; for 
further details see Chap. 7. 

Similar to the calculation of phase equilibrium properties of fundamental equations for pure 
substances, the following equations can be obtained from the equality of temperature and 
pressure [Eqs. (5.32) and (5.33)]: 

p
RT

xs r1 ( , , ) , (5.51) 

p
RT

xs r1 ( , , ). (5.52) 

Since the two phases of a non-critical mixture are characterised by different compositions 
resulting in different values for the reducing functions and the corresponding reduced 
variables, a simple integral criterion which connects all phase equilibrium properties in a 
single relation such as Eq. (4.11) does not exist for mixtures35. Aside from the equality of 
temperature, pressure, and chemical potentials, further equations resulting from the material 
balances between the molar amounts of the components in the overall system and the 
coexisting phases have to be satisfied as secondary conditions according to  

x x xi i i1a f , i = 1, 2, ..., N, (5.53) 

where the overall vapour fraction is 

                                                
35  The equations that correspond to the Maxwell criterion for pure substances [Eq. (4.11)] for fitting 

the different correlation equations of multi-fluid mixture models to VLE data of binary mixtures are 
described in Sec. 5.5.2. 
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Substituting Eq. (5.41) into the material balance equations [Eq. (5.53)] yields 
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Ki
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   and x K x
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i i

i1
. (5.56) 

Thus, the phase mole fractions x  and x  can be calculated from the K-factors, the overall 
vapour fraction , and the overall composition x .

Formulation of a Set of Equations 

As described in the sections above, all of the basic relations required for vapour-liquid 
equilibrium calculations using a mixture model based on a multi-fluid approximation have 
been derived. A general formulation of the vapour-liquid equilibrium of a non-reacting 
mixture of N components can be expressed by the following set of nonlinear equations: 

T Ts 0, (5.57a) 

T Ts 0 , (5.57b) 

RT x x pr
r

s( ) ( , , )1 0 , (5.57c) 
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, (5.57g) 

1 0a f x x xi i i , i = 1, 2, ..., N. (5.57h) 

With Ts, T , T , ps, , , x , x , ,  and x , the set of equations contains 3 7N  variables, 
but only 2 6N  equations. Thus, N 1 variables have to be specified. 

The above set of equations can be reduced to a smaller set by using the fugacity coefficient 
equilibrium equations [Eq. (5.40)] along with the equilibrium factors [Eq. (5.41)] according to 

5.4   The Calculation of Thermodynamic Properties... 
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Ki
i

i
, i = 1, 2, ..., N, (5.58) 

and the following summation of mole fraction relations, the Rachford-Rice equation 
[Rachford and Rice (1952)]: 
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In combination with the two specification equations used to define the phase equilibrium 
problem and written in the general form 

q x x T p1 0( , , , , )    and q x x T p2 0( , , , , ) , (5.60) 

one obtains N 3 equations for the N 3 variables, namely the N K-factors, the vapour 
fraction , the temperature T ( Ts ), and the pressure p ( ps). The fugacity coefficients of 
Eq. (5.58) depend on temperature, pressure, and the phase compositions x  and x  [see 
Eq. (5.43)]. The phase compositions are given in terms of the K-factors and  according to 
Eq. (5.56). Equation (5.60) typically corresponds to fixing two of the independent variables T,
p, and , or, alternatively, fixing one of these variables, e.g. the pressure p, and in addition 
specifying an overall property of the mixture, such as the total enthalpy H, the total entropy S,
or the total volume V (see also Sec. 5.4.3). Since the calculated values of the K-factors 
frequently span a range of several orders of magnitude and in order to obtain a suitable 
scaling, it is common to use the logarithm of the K-factors as the independent variables. 

Initial Estimates 

The iterative solution of Eqs. (5.57a) – (5.57h) requires initial estimates for the variables to be 
calculated (see Sec. 5.4.3 for brief information on commonly applied numerical procedures). 
At low pressures ( p  1 MPa), where the gas phase of a mixtures behaves nearly ideally, 
suitable initial estimates for unknown quantities, such as the phase compositions, saturation 
temperature, and vapour pressure, can be obtained by solving Raoult’s law. For higher 
pressures these initial estimates are not applicable. A customary method employed when no 
information about the solution is available in advance is the use of the Wilson K-factor
expression36 to generate approximate values of phase properties according to  
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where Ki  is the K-factor of component i [see Eq. (5.41)], and T ic, , p ic, , and i  are the critical 
temperature, the critical pressure, and the acentric factor of component i. The Wilson 

                                                
36 The Wilson K-factor approximation is actually a generalised correlation equation for the vapour 

pressure of the form ln /p A B Ts , fixed at the pure component critical point and at a reduced 
temperature of T T/ .c 0 7, where log ( / )10 1p ps c .
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approximation is usually adequate for calculations of hydrocarbon mixtures, although the K-
values predicted for components at supercritical conditions can be quite erroneous [see 
Michelsen and Mollerup (2004)]. 

For the development and evaluation of the new mixture model, the available experimental 
data were used as initial estimates. In general, experimental results do not contain the 
complete information for the required variables in the set of equations. Thus, the remaining 
quantities have to be estimated. 

Approximate values for the saturated liquid and saturated vapour densities are of essential 
importance. At a given temperature, for a known composition and a given vapour pressure, 
the corresponding liquid phase or gas phase density can be calculated iteratively from an 
equation of state analogous to the density calculations in the homogeneous region. The 
resulting liquid phase density is a suitable initial estimate for the saturated liquid density, and 
the calculated gas phase density can be used as an estimate for the saturated vapour density. 

The Trivial Solution 

An important problem associated with the iterative calculation of phase equilibrium properties 
from equations of state is the potential existence of a solution with identical phase 
compositions and properties in all phases. Such a trivial solution automatically satisfies 
Eqs. (5.57a) – (5.57h). The problem is frequently encountered when inadequate initial 
estimates are used and are particularly magnified for calculations in the critical region. At the 
critical point of a mixture the vapour and liquid phases have identical compositions, and the 
equilibrium compositions are nearly equal in the vicinity of the critical point, i.e.  

x x xi i i. (5.62) 

Iterative phase equilibrium calculations in this region tend to converge to the trivial solution 
unless initial estimates of high quality are used.

5.4.2 The Calculation of Liquid-Liquid and Multi-Phase Equilibrium 
Properties

Since mixture models based on multi-fluid approximations are valid in the extended fluid 
region, they allow the calculation of fugacity coefficients in the liquid phase. Therefore, they 
should in principle be suitable to describe equilibria between two liquid phases and also 
between several vapour and liquid phases. Although (almost) only vapour-liquid equilibrium 
data were used for the development of the new mixture model for phase equilibrium, the first 
investigations performed in this work showed that the model is capable of predicting liquid-
liquid equilibria (LLE) as well as vapour-liquid-liquid equilibria (VLLE), similar to other 
commonly applied equations of state such as cubic equations (see also Sec. 7.7.3).

5.4   The Calculation of Thermodynamic Properties... 
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Similar to Eqs. (5.32) – (5.34) the following basic set of equations has to be solved to 
calculate the multi-phase equilibrium of P coexisting phases of a non-reacting mixture 
consisting of N components: 

equality of temperature T ( )1  = T ( )2  = ... = T P( ) , (5.63) 

equality of pressure p( )1  = p( )2  = ... = p P( ) , (5.64) 

equality of chemical potentials i
( )1  = i

( )2  = ... = i
P( ), i = 1, 2, ..., N. (5.65) 

The iterative solution of these basic equilibrium conditions can be rather complicated for both 
liquid-liquid and multi-phase equilibrium calculations due to several reasons [see, for 
example, Michelsen (1986), Michelsen and Mollerup (2004)]. The main difficulties of such 
calculations are the lack of “natural” initial estimates and the presence of two or more liquid 
phases with different compositions where more than one component is present in significant 
amounts. Due to the lack of “natural” initial estimates, the verification of stability may require 
repeated calculations using different initial estimates. The presence of two or more liquid 
phases which are composed of several components in substantial amounts requires extensive 
stability analysis calculations for which it may be difficult to obtain convergence. 

5.4.3 Numerical Procedures for Iterative Phase Equilibrium Calculations 

As described in the previous sections, the phase equilibrium conditions form a nonlinear set 
of equations which has to be solved iteratively. For the corresponding iterative procedures, 
different types of phase equilibrium calculations can be defined which depend on the 
quantities specified and those to be calculated. The number of variables that can be specified 
independently is in accordance with the number of degrees of freedom which can be 
expressed, according to the phase rule of Gibbs, as 

F N P2 , (5.66) 

where F is the number of degrees of freedom, N is the number of components in the system, 
and P is the number of coexisting phases in the system. The number of degrees of freedom 
equals the difference between the total number of variables and the number of equilibrium 
conditions. For the vapour-liquid equilibrium, five common types of VLE calculations 
typically encountered in technical applications are specified as shown in Table 5.3. 

The bubble and dew point calculation types listed in Table 5.3 have in common the respective 
composition of either the vapour or liquid phase. With the pT flash calculation the equilibrium 
compositions of both phases are determined for given values of temperature T, pressure p, and 
overall composition x . In addition to the phase equilibrium calculation at a specified 
temperature and pressure, which is the well-known isothermal flash calculation, a number of 
other flash specifications are of practical importance. Examples of technical relevance are the 
isenthalpic flash (specification of pressure and enthalpy) and the isentropic flash 
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(specification of pressure and entropy). Additionally, specification of temperature and volume 
(e.g. storage vessels and pipeline shutdown), and specification of volume and internal energy 
(e.g. unsteady state operations), are of increasing interest [see Michelsen (1999)]. 

Table 5.3 Five common types of vapour-liquid equilibrium calculations 

Calculation type Specified quantities Calculated quantities 

1 Bubble point pressure at a given temperature T x, , , ,p x
2 Dew point pressure at a given temperature T x, , , ,p x
3 Bubble point temperature at a given pressure p x, , , ,T x
4 Dew point temperature at a given pressure p x, , , ,T x
5 pT flash p T x, , , , ,x x

Over the last several decades, a numerous amount of procedures were reported which are 
suitable to solve the phase equilibrium conditions based on equations of state for mixtures. A 
survey of such procedures is given by Heidemann (1983). The computational aspects of a 
number of iterative procedures to solve two-phase and multi-phase equilibrium conditions are 
presented by Michelsen and Mollerup (2004). 

Successive Substitution 

A simple and commonly applied numerical method is the successive substitution. A detailed 
description of this procedure is given by Prausnitz and Chueh (1968) and Lemmon (1991). 
For the successive substitution the solution to all quantities to be calculated is not determined 
simultaneously. Starting, for example, with an estimated value for the vapour pressure, the 
corresponding phase compositions and densities are calculated to satisfy the remaining phase 
equilibrium conditions. Based on this iterative solution, a new value for the vapour pressure is 
calculated and the iterative process is successively continued until the solution to all variables 
and equations is determined. The main advantages of this approach are the comparatively 
simple structure of the corresponding algorithm and a less sensitive behaviour in the quality 
of the initial estimates than are frequently observed for methods which simultaneously solve 
all phase equilibrium conditions. On the other hand, the sequence of iterations converges only 
linearly to the solution resulting in a comparatively low speed of convergence.  

The Newton-Raphson Method 

Another well-established numerical method used for solving nonlinear algebraic equations is 
the Newton-Raphson method [e.g. Press et al. (1986)]. Algorithms based on this approach 
solve the phase equilibrium conditions simultaneously and were successfully used and 
optimised by numerous authors [e.g. Asselineau et al. (1979), Michelsen (1980), Deiters 
(1985), Wendland (1994)]. A corresponding algorithm was developed by Klimeck (2000) and 

5.4   The Calculation of Thermodynamic Properties... 
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is used for the development of the new mixture model in this work. Starting from initial 
estimates for all involved variables, the nonlinear set of equations composed of the phase 
equilibrium conditions and the secondary conditions is linearised and the resulting linear set 
of equations is solved. The resulting solution vector is inserted in the nonlinear set of 
equations, which is then linearised and solved again. These steps are repeated until 
convergence occurs. An essential advantage of the Newton-Raphson method is the quadratic 
convergence of the iterations. Machine accuracy can be obtained with very little additional 
effort. The main drawback of the Newton-Raphson method is that the convergence is only 
assured when “good” initial estimates are available. In general, it is very difficult to ascertain 
that initial estimates are of adequate quality since experimental data for the phase equilibrium 
are often of poor quality (see Chap. 6) and no accurate auxiliary equations are available to 
determine the initial estimates for calculations under nonideal conditions (e.g. high pressure 
phase equilibria, critical point calculations, etc.). Therefore, the use of alternative 
convergence methods for phase equilibrium calculations is advantageous for the initial 
iterations to enhance the stability of the iterative process. Such an alternative method is the 
successive substitution approach described above. Further details concerning the Newton-
Raphson method and the algorithm used, which is based on a full Newton-Raphson approach, 
are given by Klimeck (2000).  

5.4.4 Minimisation of a Thermodynamic State Function 

Frequently, the set of nonlinear equations to be solved for phase equilibrium calculations can 
be formulated as an optimisation problem. Thus, the solution corresponds to an extremum of 
an objective function. For instance, the flash specifications of practical importance mentioned 
above can be formulated as a minimisation of a thermodynamic state function. The solution 
for the isothermal flash as the classical and most frequent example yields the global minimum 
of the Gibbs free energy of the mixture. In addition, specifications of composition in 
combination with pressure and enthalpy, pressure and entropy, temperature and volume (the 
“natural” choice of independent variables for mixture models explicit in the Helmholtz free 
energy), internal energy and volume, and entropy and volume all permit the application of a 
corresponding thermodynamic state function for which a global minimum must be located. 
Table 5.4 lists the state functions to be minimised with the corresponding flash specifications. 

Table 5.4 State functions to be minimised for given specifications 

Specification p, T, n p, H, n p, S, n T, V, n U, V, n S, V, n
State function G S H A S U

The essential difference between solving a general set of algebraic equations and determining 
a local minimum is that for minimisation problems procedures which guarantee convergence 
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from arbitrary initial estimates can be constructed. There are two important advantages of the 
approach based on minimisation. Firstly, the minimisation problems for most cases have a 
unique solution, and secondly, stability analysis can be used to verify its correctness and to 
determine the number of equilibrium phases. Details regarding different state function based 
optimisation approaches are given by Michelsen (1999) and Michelsen and Mollerup (2004). 
The following paragraphs provide a brief introduction to the basic principles of the 
minimisation of thermodynamic state functions. 

In equilibrium calculations which can be formulated as minimisation problems, it is often 
advantageous to use molar amounts (per unit feed) instead of mole fractions as the 
independent variables. The liquid and vapour amounts are related to the corresponding mole 
fractions by

l xi i1a f    and v xi i . (5.67) 

Hence, the material balance equation, Eq. (5.53), can be simplified to 

l v xi i i , i = 1, 2, ..., N. (5.68) 

For the two-phase isothermal flash (at specified T, p, and x ), the equilibrium calculation can 
then be formulated as  

min , , ,G T p v lb g  (5.69) 

subject to T Tspec , p pspec , and the set of linear constraints l v x , or as the 
unconstrained minimisation by treating the mole numbers in the liquid phase as dependent 
variables (see also Sec. 7.6.1): 

min , , ,G T p v x vspec specc h. (5.70) 

The phase equilibrium calculation for other specifications (see Table 5.4) is, however, not as 
straightforward as for the pT flash since the specification of, for example, the total enthalpy or 
total entropy (of the overall system), is nonlinear in the independent variables and thus the 
constraint cannot be eliminated explicitly. For example, the minimisation formulation of the 
two-phase isenthalpic flash is 

min , , ,S T p v lb gm r (5.71) 

subject to the constraints  

p pspec , l v x ,   and H T p v l H, , ,b g spec 0. (5.72) 

Eliminating the linear material balance constraint similar to the pT flash results in: 

min , , ,S T p v x vspecc hn s    subject to   H T p v x v H, , ,spec specc h 0, (5.73) 

5.4   The Calculation of Thermodynamic Properties... 
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where the constraint of specified total enthalpy is nonlinear in its independent variables. In 
order to formally eliminate the remaining constraint, the objective function can be modified 
by forming the function Q defined by

Q T p v x v
T

G H, , ,spec specc h c h1  (5.74) 

with the independent variables T and v ; see Michelsen (1999) for further characteristics of 
this approach. Similar Q-functions for state function based specifications with the Gibbs free 
energy as the “core function” can be formulated for the other specifications listed in 
Table 5.4. 

With regard to mixture models based on multi-fluid approximations explicit in the reduced 
Helmholtz free energy, it should be mentioned that flash calculations for all of the different 
specifications listed in Table 5.4 can also be formulated as minimisation (or maximisation) 
problems using the Helmholtz free energy as the core function (see Sec. 7.9). 

5.5 Basics of the Development of the Binary Correlation Equations 
in Mixture Models Based on Multi-Fluid Approximations 

The basic principles for the development of mixture models based on multi-fluid 
approximations are strongly related to the development of empirical equations of state for 
pure substances (see Chap. 4). In contrast to the development of an equation for the residual 
part of the Helmholtz free energy of a pure substance equation of state (see Sec. 4.4), several 
correlation equations characterised by mathematically different structures have to be 
developed to take into account the residual behaviour of a mixture. As already mentioned, the 
respective tools used for the development of the new multi-fluid mixture model were 
developed and reported in a preceding study by Klimeck (2000). Some of the basic and 
important principles of the development of multi-fluid mixture models are briefly summarised 
in the following sections. Further details are given by Klimeck (2000).  

As described in Chap. 4, the minimisation of the sum of squares according to Eq. (4.16) is the 
essential criterion for optimising the structure of modern multi-parameter equations of state 
and fitting their coefficients to data. The same is true for the development of the different 
correlation equations in mixture models based on multi-fluid approximations. The sum of 
squares of all data used for the development of the equations is calculated by the summation 
over all weighted residua j m,  of each of the Mj  measured data points for the J considered 
properties according to 

2 2

11
j m

m

M

j

J j

, . (5.75) 

The weighted residuum j m,  of any property z can be expressed as  
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j m j m mz z a, , ,( )exp calc tot
1 . (5.76) 

Similar to the relations for property calculations, the residua of thermodynamic properties in 
the homogeneous region are basically the same for both pure substances and mixtures. Thus, 
the same basic relations can be applied for the development of mixture models based on 
multi-fluid approximations (see Table 4.3). For example, the weighted formulation of the 
residuum z z z aexp calc( ) of a measured speed of sound data point, i.e. z = w, is given by 

L

N
MM

O

Q
PP

w M
RT

2
2

2

2
11 2

1r r
r r

o r tot
c h
c h . (5.77) 

A list of the residua of other thermodynamic properties used for the development of the 
equations presented in this work is provided by the selected sums of squares of the linear and 
nonlinear data given in Table 4.3.  

To minimise the sum of squares by a variation of the parameter vector a  of the correlation 
equation to be developed, the procedures used require the derivatives of each residuum with 
respect to all parameters ai . The calculation of the partial derivative 

j m

i a

j m

i
a

ma

z z a

a
k

k

, ,
,

( )F
HG
I
KJ
F

H
GG

I

K
JJ

exp calc
tot

1  (5.78) 

can be reduced to the derivative of the calculated property zcalc with respect to the parameters: 

j m

i a

j m

i
a

ma

z a

a
k k

, ,
,

( )F
HG
I
KJ

F
HGG

I
KJJ

calc
tot

1 . (5.79) 

To allow the development of computing-time saving algorithms, the derivatives of the various 
considered thermodynamic properties were analytically determined in the tools developed by 
Klimeck (2000). 

5.5.1 The Calculation of the Derivatives of the Residua with Respect to the 
Parameters ai

For fitting the coefficients and parameters of the used mixture model to experimental data for 
thermal and caloric properties of binary mixtures, the evaluation of the required derivatives 
with respect to the different coefficients and parameters requires a comparatively large effort. 
For a binary mixture, the residual part of the reduced Helmholtz free energy of a multi-fluid 
mixture model can be expressed in the following general form:  

r r lin r( , , ) ( , , ) ( ) ( , ), ,x x f x , (5.80) 

5.5   Basics of the Development of the Binary Correlation Equations... 



70 5   Equations of State for Mixtures

where r lin,  is the contribution of the linearly combined residual parts of the pure substance 
equations of state [see Eq. (5.7)] and  and  are the reduced mixture variables according to 
Eq. (5.3). The fitting of the coefficients and parameters of such an approach requires the 
distinction whether the parameter ai  is a parameter of  

the reducing function for mixture density r  [e.g. Eq. (5.10)],

the reducing function for mixture temperature Tr  [e.g. Eq. (5.11)],

the composition-dependent factor f  [e.g. Eq. (5.21)], or

the function r, , which is the part of the departure function depending only on the 
reduced mixture variables  and  [e.g. Eq. (5.24)]. 

For fitting an equation of state for mixtures to, for example, speed of sound data w T p x( , , ),
the following cases have to be distinguished37. When the parameter ai  is a parameter of the 
reducing function for the mixture density, the derivative of Eq. (5.77) with respect to ai  is 
given by 

a ai T p x a ik

F
HG
I
KJ , , ,

1+

1+ 2

r

r r
c h

2
1

r

r . (5.81) 

For ai  as a parameter of the reducing function for mixture temperature, the derivative can be 
written as

a T
T
ai T p x a ik

F
HG
I
KJ

F
HG

I
KJ, , ,

2

2
1r

r r
r

1+ 2
. (5.82) 

In case ai  represents a parameter of the composition-dependent factor f  of the departure 
function, it is obtained as 

a
f
ai T p x a ik

F
HG
I
KJ , , ,

2 2r, rc h

F

H
GG

I

K
JJ

1 2 1
1

2

2
r r r, r,

r r
r,c h c h c h f

ai

2

21 2 r r
r, f

ai
. (5.83) 

Whereas for a parameter of the function r, , which only depends on the reduced mixture 
variables  and , the derivative results in

a
f f

i T p x a
a a

k
i i

F
HG
I
KJ , , ,

2 2r, r,

37  For simplicity, the factor tot  [see Eq. (4.18)] is set to unity. 
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F

H
GG

I

K
JJ

1 2 1
1

2

2
r r r, r,

r r
r,c h d i c h

f f fa a ai i i

2

21 2 r r
r,f ai

. (5.84) 

The respective derivatives required for fitting all other thermodynamic properties in the 
homogeneous region can be derived in the same way. For nonlinear data the tools of Klimeck 
(2000) for the development of mixture models based on a multi-fluid approximation enable 
either the direct fitting, or for the use in the linearised form with precorrelated values for the 
density and the required precorrelation coefficients. 

5.5.2 The Consideration of VLE Properties of Binary Mixtures 

The new mixture model for natural gases and other mixtures is based, aside from many other 
thermodynamic properties, on data of thermal properties for the vapour-liquid equilibrium of 
binary mixtures. Similar to the calculation of phase equilibrium properties, the fitting of VLE 
data of mixtures requires much more complex and sophisticated procedures compared to pure 
substances.

For a binary mixture, the set of nonlinear equations for phase equilibrium calculations 
[Eqs. (5.57a) – (5.57h)] can be reduced to the following four relations: 

p
RT
s r1 , (5.85) 
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5.5.3 Linearised VLE Data for Optimising the Structure of the Departure 
Function and for Fitting the Nonlinear Elements of a Multi-Fluid 
Approximation

Since the structure-optimisation method only works with linear data (see Sec. 4.4), the VLE 
data have to be linearised for optimising the structure of the departure function, i.e. the 
function r,  of Eq. (5.80). Similar to the linear fitting of a pure substance equation of state to 
thermal properties on the vapour-liquid phase boundary [see Wagner (1970), (1972), Bender 
(1970), (1971), and McCarty (1970)], each equation in the set of nonlinear equations 
representing the mixture equilibrium conditions is isolated. Instead of iteratively solving 
Eqs. (5.85) – (5.88) for the independent variables, a data type T p x x, , , , ,s exp1 1a f  is 
considered, which contains data for all equilibrium properties of a binary mixture. This 
approach enables the use of the thermodynamic information on the phase equilibrium for the 
linear structure optimisation of the part of the departure function which only depends on the 
reduced mixture variables  and . The contributions of the residua to the sum of squares 
resulting from Eqs. (5.85) – (5.88) are given by: 

s,
s

1
2

2
2

,
r

m
m

m
p RT

RT
L
NM

O
QP , (5.89) 

s,
s

2
2

2
2

,
r

m
m

m
p RT

RT
L
NM

O
QP , (5.90) 

s,
s r r

3
2 1

1

1 1
, lnm

x
x

p
RT

F
HG
I
KJ
F
HG

I
KJ

L
NM

F
HG

I
KJ
F
HG
I
KJ

F
HG
I
KJ
F
HG
I
KJ

L

N
MM

O

Q
PP1 1 1 1

1
1 1 1

x p
RT x T

T
x x

a f
r

r r r
r

s d
d

d
d

,

F
HG

I
KJ
F
HG
I
KJ

F
HG
I
KJ
F
HG
I
KJ

L

N
MM

O

Q
PP
O

Q
PP1 1 1 1

1
1 1 1

2x p
RT x T

T
x x

m

ma f
r

s r r r
r

2

d
d

d
d

,

, (5.91) 

s,
s r r

4
2 1

1

1
1

1 1
, lnm

x
x

p
RT

F
HG

I
KJ
F
HG

I
KJ

L
N
MM
a f
a f
F
HG

I
KJ
F
HG
I
KJ

F
HG
I
KJ
F
HG
I
KJ

L
N
MM

O
Q
PPx p

RT x T
T
x x1

1 1 1

1 1 1

r

s r r r
rd

d
d
d

,



73

F
HG

I
KJ
F
HG
I
KJ

F
HG
I
KJ
F
HG
I
KJ

L

N
MM

O

Q
PP
O

Q
PPx p

RT x T
T
x x

m

m1
1 1 1

21 1 1

r

s r r r
r

2

d
d

d
d

,

. (5.92) 

The derivatives of the weighted residua s,1,m, s,2,m , s,3,m, and s,4,m  with respect to the 
parameters of the function r, ( , , )a  can be calculated from Eq. (5.79) as described by 
Klimeck (2000). 

As the linearised data for the thermal VLE properties of binary mixtures are directly 
connected to the reduced residual Helmholtz free energy of the mixture, Eqs. (5.89) – (5.92) 
can be similarly used for the linear fitting of the parameters of the nonlinear elements of the 
multi-fluid approximation, namely the reducing functions for mixture density and temperature 
and the composition-dependent factor f  of the departure function. Hence, the fitting of the 
parameters of the different correlation equations of a multi-fluid mixture model can be 
performed without iteratively solving the phase equilibrium conditions. For calculating the 
respective derivatives it is certainly decisive whether the parameter is part of the reducing 
function for the mixture density, the reducing function for the mixture temperature, or the 
composition-dependent factor. 

The use of data types which require the iterative solution of equations is problematic due to 
the considerably higher demand of computing time. Moreover, such iterations may fail for 
unsuitable initial estimates resulting from, for example, poor data. Under these conditions, the 
direct fitting of VLE properties may lead to an instable fitting process38. Therefore, Klimeck 
(2000) developed routines which enabled the parameters of the nonlinear elements of a multi-
fluid approximation to be fitted to linearised VLE data aside from routines which allow the 
direct fitting of the parameters to VLE data. The linearised fitting procedures were used in 
this work for fitting VLE data of poor quality, and also at the beginning of a fitting process to 
establish a first set of parameters that are then further optimised by using the direct fitting 
routines described in the next section.

5.5.4 Direct Fitting to VLE Data 

As demonstrated in the previous section, the linearisation of the phase equilibrium conditions 
is applicable to take into account the experimental information of VLE data for optimising the 
structure of the departure function and for the linear and computing-time saving fitting of the 
nonlinear elements of a multi-fluid approximation. The direct fitting of, for example, 

38  For instance, a failure of the iteration in the first step of the nonlinear fitting process occurs when, 
for given values of temperature and composition, no phase equilibrium exists for the initial 
parameter vector a . Consequently, the respective data point will be excluded from this step and the 
contribution of this point to the sum of squares vanishes. If the next iteration for the varied 
parameter vector a  is successful, the same data point would now contribute to the sum of squares. 
This ends up in a higher sum of squares although the equation yields a better result. 

5.5   Basics of the Development of the Binary Correlation Equations... 
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saturated liquid densities, vapour pressures, and saturated vapour phase compositions, can 
only be achieved by nonlinear procedures. Therefore, similar to pure substances [see Ahrendts 
and Baehr (1979), (1981)], Klimeck (2000) isolated the phase equilibrium conditions for 
binary mixtures. 

There are a number of options to form residua to fit the parameters of equations of state for 
mixtures to data of thermodynamic properties for the vapour-liquid equilibrium. When 
considering the data type p T x xs s exp, , ,1 1a f , which is the most measured type in the literature 
(see Chap. 6), the experimental information can be used for fitting in several ways. Measured 
pressures can be used for fitting the bubble point pressure at a given temperature and 
composition of the saturated liquid phase  

m m mp p T x2
1

2 2
s s,calc ,a f  (5.93) 

or for the dew point pressure at a given temperature and composition of the saturated vapour 
phase

m m mp p T x2
1

2 2
s s,calc ,a f . (5.94) 

Similarly, the measured temperature can be used as a bubble point temperature or dew point 
temperature at a given pressure and at a given saturated liquid or saturated vapour phase 
composition: 

m m mT T p x2
1

2 2
s s,calc ,a f , (5.95) 

m m mT T p x2
1

2 2
s s,calc ,a f . (5.96) 

Similar combinations are obtained for the phase equilibrium compositions.  

Based on the experiences of Klimeck (2000) and those reported in the literature by other 
authors regarding the sensitivity of the parameters of equations of state while fitting different 
phase equilibrium properties, only the fitting of bubble point pressures, saturated liquid 
densities, and saturated vapour phase compositions was performed for the new mixture 
model. The contributions to the sum of squares for fitting these properties can be formulated 
for a binary mixture as follows: 

s,5
2

1
2 2

, s s, , ,m m mp p T x acalca f , (5.97) 

s,6
2

1
2 2

, , ,m m mT x acalca f , (5.98) 

s,7
2

1 1 1
2 2

, , , ,m m mx x T x acalca f . (5.99) 

Equations (5.97) – (5.99) depend on the temperature T and the composition of the saturated 
liquid phase x1. For the nonlinear fitting procedure, the derivatives of the residua with respect 
to the parameters of the respective correlation equation are required. Therefore, the 
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derivatives p ais,calc , calc ai , and x ai1,calc  have to be determined. For the analytic 
evaluation of these derivatives the phase equilibrium conditions have to be isolated: 

p avs , (5.100) 

p avs , (5.101) 
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By means of suitable transformations the results for the derivatives of the three properties 
considered for fitting are obtained: 
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where
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From Eqs. (5.104) – (5.106) the required derivatives of the corresponding residua can be 
derived. The fitting routines developed by Klimeck (2000) depend on reduced variables. 
Therefore, the equations above have to be transformed according to a RT o rc h [see 
Eqs. (5.1) and (5.2)]. Equations (5.107) – (5.109) differ depending on the affiliation of the 
respective parameter to the elements of a multi-fluid mixture model. An overview of all of 
these derivatives is given in Table 5.5.

5.5   Basics of the Development of the Binary Correlation Equations... 
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6 Experimental Data for Binary and Multi-Component 
Mixtures of Natural Gas Components 

The new wide-range equation of state for natural gases and other mixtures is based on pure 
substance equations of state for each considered mixture component (see Chap. 4) and 
correlation equations for binary mixtures consisting of these components (see Chaps. 5 and 
7). This allows a suitable predictive description of multi-component mixtures over a wide 
range of compositions, which means it is able to predict the properties of a variety of different 
natural gases and other multi-component mixtures. The basis for the development of such an 
empirical equation of state are experimental data of several thermodynamic properties. These 
data are used to determine the structures, coefficients, and parameters of the correlation 
equations and to evaluate the behaviour of the equation of state in different fluid regions. The 
quality and the extent of the available data limit the achievable accuracy of the equation. 
Therefore, a comprehensive database of binary and multi-component mixture data has been 
built up and continuously updated since the beginning of this project39.

The database contains more than 100,000 experimental data for the thermal and caloric 
properties of binary mixtures, natural gases, and other multi-component mixtures, measured 
by more than 500 different authors. The collected data cover the homogeneous gas, liquid, 
and supercritical regions as well as vapour-liquid equilibrium (VLE) states at temperatures 
ranging from 16 K to 800 K and pressures up to 2,000 MPa. The different types of 
thermodynamic properties are as follows: 

p T

Isochoric heat capacity cv

Speed of sound w

Isobaric heat capacity cp

Enthalpy differences h

Excess molar enthalpy hE

Second acoustic virial coefficient a

Saturated liquid density 

VLE data 

39  The database also contains very recently obtained data that were not available at the time the new 
equation of state was developed. To evaluate the accuracy of the new equation of state in the 
description of thermodynamic properties, the new measurements were used for comparisons as 
well.
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Almost 70% of the available mixture data describe the p T relation. More than 20% of the 
data are vapour-liquid equilibrium state points and less than 10% account for caloric 
properties. More than 79,000 data for thermal and caloric properties are available for a total of 
98 binary mixtures consisting of the 18 considered natural gas components listed in Table 4.2. 
The number of binary data selected for the development of the new equation of state amounts 
to approximately 40,000. Thus, about 50% of all the available binary mixture data were used 
for fitting the coefficients and parameters and for optimising the structure of the new wide-
range equation of state. All of the remaining data were used for comparisons. For multi-
component mixtures, about 27,000 data for thermal and caloric properties are accessible. This 
enabled a comprehensive validation of the new equation of state with data for natural gases 
and other multi-component mixtures.  

Table 6.1 Overview of all binary and multi-component mixture data collected for the development 
and evaluation of the new wide-range equation of state for natural gases and other 
mixtures

Data type Number of data points 
 Binary mixtures Multi-component Sumd

 totala usedb mixturesc

p T data 51442 30252 21769 73211 
Isochoric heat capacity 1236 625 – 1236 
Speed of sound 2819 1805 1337 4156 
Isobaric heat capacity 1072 490 325 1397 
Enthalpy differences 1804 198 1166 2970 
Excess molar enthalpy 177 20 – 177 
Second acoustic virial coeff. 21 – – 21 
Saturated liquid densitye 460 119 124 584 
VLE dataf 20161 6350 2284 22445 

Total 79192 39859 27005 106197 
a Number of all available data points. 
b Number of data points used for the development of the new wide-range equation of state. 
c Number of all available natural gas and other multi-component mixture data. 
d Sum of all available binary and multi-component mixture data. 
e Listed separately due to a different data format. Saturated liquid (and vapour) densities may also be 

tabulated as ordinary p T or VLE data. 
f The total number of VLE data comprises 15,225 pTxy data, 3,386 pTx data, and 3,834 pTy data. 

Table 6.1 gives an overview of all binary and multi-component mixture data compiled in the 
database. More detailed descriptions of the data are given in the following sections (see 
Tables 6.3 – 6.5). Nevertheless, due to the extensive amount of data for a large number of 
different binary and multi-component mixtures, only basic remarks on the data situation are 
given in this chapter. Further summaries and comprehensive listings of all binary and multi-

6   Experimental Data for ... Mixtures of Natural Gas Components 
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component mixture data along with detailed statistical comparisons of each data set by means 
of the new equation of state, the AGA8-DC92 equation of Starling and Savidge (1992), and 
the cubic equation of state of Peng and Robinson (1976) are provided in the appendix of this 
work (see Tables A2.1 – A2.8). Full bibliographical information on the references of the data 
is given in the “References” section at the end of this work. 

All available data were assessed by means of comparisons with other data and values 
calculated from different equations of state. The data classified as “reliable” were used for the 
development of the new equation of state. Other data were only used for comparisons. Many 
of the collected data do not meet present quality standards. However, for several binary 
mixtures these data represent the only available experimental information.  

Table 6.2 Estimated relative experimental uncertainties of the most accurate binary and multi-
component mixture data 

Data type Property Relative uncertainty 

p T data  (0.05 – 0.1)% 
Isochoric heat capacity c cv v  (1 – 2)% 
Speed of sound (gas phase) w w  (0.05 – 0.1)% 
Isobaric heat capacity c cp p  (1 – 2)% 
Enthalpy differences h h  (0.2 – 0.5)% 
Saturated liquid density  (0.1 – 0.2)% 
VLE data p ps s  (1 – 3)% 

The total uncertainties of the most accurate experimental binary and multi-component mixture 
data with respect to selected thermodynamic properties are listed in Table 6.2. The tabulated 
values represent the lowest uncertainties achieved by the new mixture model. The 
corresponding experimental results are based on modern measurement techniques which fulfil 
present quality standards. For density measurements, these include, for example, the results 
that were determined by using a two-sinker or single-sinker densimeter [e.g. Glos et al.
(2000) and Chamorro et al. (2006)]. Highly accurate speed of sound data were, in general, 
measured by means of spherical-resonators [e.g. Costa Gomes and Trusler (1998), 
Estela-Uribe (1999), Trusler (2000)]. Data measured using methods based on these particular 
techniques are characterised by uncertainties equal to or below the lowest values listed in 
Table 6.2. In contrast to the experimental uncertainties given for pure fluid properties 
measured using state-of-the-art techniques, the experimental uncertainties estimated for the 
properties of mixtures measured with the same apparatuses are, in general, higher due to the 
significant contribution of the uncertainty in the mixture composition.  

Aside from the data taken from the literature, about 28% of all p T data were taken from the 
“GERG Databank of High-Accuracy Compression Factor Measurements – GERG TM7 
1996” [Jaeschke et al. (1997)], which comprises a total of about 12,000 binary data and above 
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16,000 data of more than 110 natural gases and other related multi-component mixtures. 
Many of these density data were measured at the Ruhrgas using two different methods of 
measurement, namely the Burnett method and an optical interferometry method. The 
uncertainty of these measurements is claimed by the authors to be  (0.07 – 0.1)%, 
which agrees with the results of the investigations of Klimeck (2000) and those carried out in 
this work. Although, the experimental data assembled in the GERG TM7 provide, on average, 
a very reliable basis for the development and evaluation of the new mixture model, the major 
drawback of these data is their limited temperature range. Most of the data were measured in 
the gas phase at temperatures from 270 K to 350 K and pressures p  30 MPa40.

As shown in Table 6.4, data for vapour-liquid equilibrium states provide an essential amount 
of experimental information on the mixture behaviour for many of the considered binary 
systems. Moreover, for several binary mixtures there are no data available in the 
homogeneous region. In general, the collected VLE data are very useful as they cover large 
composition ranges. This feature is important for fitting the parameters of the composition-
dependent elements of the multi-fluid approximation (namely the reducing functions) to 
experimental data. However, the quality of these data is comparatively poor and in several 
cases not suitable for the development of an accurate equation of state. In contrast to the 
available thermodynamic properties for mixtures in the homogeneous region which almost 
achieve the accuracy of the corresponding properties for pure fluids, the experimental 
uncertainty in vapour pressure differs by several orders of magnitude. Usually, the uncertainty 
in vapour pressure of binary and multi-component mixtures amounts to (3 – 5)% and more. 
Similarly high experimental uncertainties occur for measured bubble and dew point 
compositions, dew point temperatures, and saturated vapour densities. These weaknesses in 
the VLE data sets limit the achievable accuracy in the description of such properties by the 
developed mixture model; for further investigations regarding the quality of VLE data see 
Klimeck (2000).  

The type of VLE measurements depends on the experimental equipment used by the authors. 
There are basically three different types of VLE data. Most of the available VLE data are 
comprised of experimental values for the temperature T, the pressure p, and the compositions 
x  and y  (x  and x , respectively) of the two equilibrium phases. These data are referred to in 
this work as pTxy data. This type was essentially used for the developed mixture model. Other 
measurements only consider the composition of either the saturated liquid phase ( pTx data) or 
saturated vapour phase ( pTy data). Only few VLE data consider the saturated vapour and 
saturated liquid densities in addition to temperature, pressure, and the compositions of both 
phases. Such data provide complete experimental information on the VLE state, which would 
be advantageous for the development of the new equation of state. However, most of the few 
existing data are of the same poor quality as observed for the other VLE data types.  

                                                
40  The GERG TM7 database covers temperatures from 218 K to 425 K and pressures up to 60 MPa. 

6   Experimental Data for ... Mixtures of Natural Gas Components 



82 6   Experimental Data for Binary and Multi-Component Mixtures...

The most accurate VLE data are those measured by Haynes et al. [Hiza et al. (1977), Hiza 
and Haynes (1980), Haynes (1982), Haynes (1983)] for saturated liquid densities of binary 
and multi-component mixtures of liquefied natural gas (LNG) components. The uncertainty in 
density of these data is less than (0.1 – 0.2)%. Resulting from the chosen measuring 
technique, the measured pressures are considered as only approximate vapour pressures and 
cannot be used. As the vapour pressures are very strong functions of composition, errors 
concerning the composition affect vapour pressure data considerably more than saturated 
liquid density data [Hiza et al. (1977)]. 

For caloric properties of binary and multi-component mixtures in the homogeneous region, a 
total of about 10,000 data are available. The most accurate caloric data are speeds of sound 
and enthalpy differences as shown in Table 6.2. Usually, a substantial amount of these data 
were measured in the gas phase at temperatures ranging from 250 K to 350 K and pressures 
up to 12 MPa. Comparatively few accurate measurements exist for higher pressures. In 
contrast to the collected p T data, caloric data are only present for a limited number of binary 
mixtures and cover, in general, limited composition ranges. 

6.1 Data for Binary Mixtures 

An extensive amount of data for the thermal and caloric properties of binary mixtures has 
been collected and assessed within the framework of this project. As shown in Table 6.4, out 
of the 153 possible combinations of binary mixtures consisting of the 18 considered natural 
gas components, data for a total of 98 binary mixtures is available for the development and 
evaluation of the new wide-range equation of state for natural gases and other mixtures. 
Compared to the preceding study of Klimeck (2000), who developed a preliminary equation 
of state for natural gases consisting of seven main and secondary natural gas components, the 
total number of binary data was more than doubled and with that the number of considered 
binary mixtures was nearly quintupled in this work. 

The data situation differs with respect to certain thermodynamic properties and the type of 
binary mixtures. Most of the binary data account for the p T relation followed by data for 
vapour-liquid equilibrium states as shown in Table 6.3. Since methane is the most important 
natural gas component, the data situation for mixtures containing methane is of primary 
interest for the development of the new equation of state. The most extensive data sets are 
those for the binary systems methane–nitrogen and methane–ethane, followed by the data for 
the binary mixtures methane–carbon dioxide and methane–propane. For these mixtures, data 
for the p T relation as well as for speeds of sound are available in the homogeneous region. 
These data are supplemented by an extensive number of thermal properties at vapour-liquid 
equilibrium. The data situation deteriorates for the methane–n-butane and methane–isobutane 
mixtures and for mixtures of methane with heavier hydrocarbons or further secondary 
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components as well (see Table 6.4). Data for caloric properties are not available for most of 
these systems and the number of p T data is also comparatively low. In general, 
comparatively poor data are available for many mixtures of secondary components. For some 
binary mixtures, the development is based only on p T or VLE data.

Liquid phase densities of comparatively high quality and measured over wide ranges of 
pressure ( p  40 MPa) exist for the binary mixtures methane–nitrogen, methane–ethane, and 
some other mixtures, such as binary mixtures consisting of the heavier hydrocarbons 
n-pentane, n-hexane, and n-heptane. In contrast to the data sets for gas phase densities, many 
of the liquid phase densities were measured for a limited number of compositions, or at only 
one constant temperature (e.g. 298.15 K) or pressure (e.g. 0.1 MPa). 

Table 6.3 Summary of the available data for thermal and caloric properties of binary mixtures 

Data type Number of Covered ranges 
 data points Temperature Pressure Compositionc,d

 totala usedb T/K p/MPa x

p T data 51442 30252 66.9 – 800 0.00 – 1027 0.00 – 1.00 
Isochoric heat capacity 1236 625 101 – 345 67.1 – 902  0.01 – 0.84 
Speed of sound 2819 1805 157 – 450 0.00 – 1971 0.01 – 0.96 
Isobaric heat capacity 1072 490 100 – 424 0.00 – 52.9 0.09 – 0.93 
Enthalpy differences 1804 198 107 – 525 0.00 – 18.4 0.05 – 0.90 
Excess molar enthalpy 177 20 221 – 373 0.8 – 15.0 0.01 – 0.98 
Second acoustic virial coeff. 21 – 200 – 375  0.15 – 0.20 
Saturated liquid densitye 460 119 95.0 – 394 0.03 – 22.1 0.00 – 1.00 
VLE dataf 20161 6350 15.5 – 700 0.00 – 422 0.00 – 1.00 

Total 79192 39859 15.5 – 800 0.00 – 1971 0.00 – 1.00 
a Number of all available data points. 
b Number of data points used for the development of the new wide-range equation of state. 
c Mole fractions of the second component of the binary mixture, i.e. component B of mixture A–B. 

Values of 0.00 and 1.00 result from a mixture composition close to a pure component. 
d The composition range for VLE data corresponds to bubble point compositions. 
e Listed separately due to a different data format. Saturated liquid (and vapour) densities may also be 

tabulated as ordinary p T or VLE data. 
f The total number of VLE data comprises 12,991 pTxy data, 3,369 pTx data, and 3,801 pTy data. 
 Density in kg m 3 instead of pressure. 

Only about 9% of the data account for caloric properties (see Table 6.3), dispersed on 17 out 
of the 98 considered binary mixtures, whereas p T and VLE data are present for most of the 
considered binary mixtures. Nevertheless, the available caloric data provide a suitable basis 
for the development of the new equation of state for natural gases as most of these data are for 
binary mixtures consisting of the main natural gas components, which already cover about 
97% of the composition of typical natural gas mixtures (see also Sec. 4.8).  

6.1   Data for Binary Mixtures 
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The data situation was significantly improved within the past five to seven years as new data 
for several binary mixtures were measured as part of the GERG project “Reference Equation 
of State for Thermal and Caloric Properties of Natural Gases” [see Klimeck (2000)] and by 
numerous other independent authors. These include, for example, the very accurate 
measurements for gas phase densities and speeds of sound of the binary mixtures methane–
nitrogen [Estela-Uribe (1999), Trusler (2000), Chamorro et al. (2006)], methane–
carbon dioxide [Estela-Uribe (1999), Glos et al. (2000), Wöll and El Hawary (2003)], 
methane–ethane [Costa Gomes and Trusler (1998), Wöll and El Hawary (2003)], and 
nitrogen–ethane [Trusler (2000)]. For the vapour-liquid equilibrium, comparatively accurate 
data were reported, for example, for methane–ethane and nitrogen–ethane [Raabe et al.
(2001)], methane–carbon dioxide and methane–propane [Webster and Kidnay (2001)], 
propane–n-butane [VonNiederhausern and Giles (2001)], and propane–isobutane 
[VonNiederhausern and Giles (2001), Lim et al. (2004)]; for further details see Table A2.1 of 
the appendix. 

With regard to the requirements on the new wide-range equation of state for natural gases, 
which demand a very accurate description of gas phase properties at supercritical 
temperatures, the present data situation is satisfactory for the p T relation in the 
homogeneous region of binary mixtures of important natural gas components as some of the 
weaknesses described by Klimeck (2000) were eliminated within the past five years. 
Nevertheless, the development of the new equation revealed several weaknesses in the data 
sets concerning mixtures containing secondary and minor components. For example, only 
comparatively few data exist for mixtures consisting of the secondary natural gas components 
as well as for mixtures containing one of the main natural gas components and a secondary 
component (see Table 6.4). In many cases only data in the liquid phase at limited 
temperatures or pressures (e.g. at atmospheric pressure) are available for the p T relation of 
mixtures consisting of heavier hydrocarbons. No suitable data are available for many mixtures 
containing oxygen, argon, and helium. 

Data for liquid phase densities for many binary mixtures of important natural gas components 
only exist as values for the saturated liquid density41 and densities located near to the 
saturation boundary. Most of these data cover temperatures from 100 K to 140 K, thus, 
enabling the development of an equation of state for the accurate description of the range 
important for custody transfer of LNG and natural gas liquefaction processes. When 
describing larger ranges in the liquid region, additional measurements over wide temperature 
and pressure ranges are necessary.

                                                
41  Those of the few saturated liquid densities of binary mixtures present in the literature where the 

respective pressures were additionally measured were also considered as ordinary p T data. For 
most of the binary mixtures, no other information concerning the volumetric behaviour of the liquid 
phase is available. 
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Within the framework of the GERG project mentioned above, new measurements were 
performed for speeds of sound of methane–nitrogen and nitrogen–ethane which eliminated 
some of the weaknesses in these data sets. However, further measurements are still 
worthwhile in order to improve the data situation with regard to caloric properties: 

For binary mixtures of methane–propane and methane–carbon dioxide, further speed of 
sound data should be measured at pressures above 10 MPa.  

As the heavier alkanes have a significant influence on the speed of sound of multi-
component mixtures at lower temperatures, speed of sound data at supercritical 
temperatures should be measured for the binary mixtures methane–n-butane42 and 
methane–isobutane. 

For mixtures of important natural gas components, such as nitrogen–carbon dioxide and 
carbon dioxide–propane, only few data are available for caloric properties. There is no 
caloric information available for most of the considered binary mixtures consisting of 
secondary natural gas components. 

Nevertheless, with the measurements carried out in the past five years, the data situation was 
improved in a way that the demands on the accuracy in the description of thermal and caloric 
properties of the new equation of state for natural gases can be fulfilled (see Chap. 3).  

Aside from the recently reported binary mixture data, other data were collected, which were 
also used only for comparisons as they were not present at the time the new equation of state 
was developed (see also Table A2.1). Some of these data will probably be used for further 
improvements in the equation of state in the near future, which will lead to minor revisions. 
This concerns, for example, the binary mixtures nitrogen–helium, carbon dioxide–propane, 
carbon dioxide–n-hexane, carbon dioxide–carbon monoxide, ethane–n-pentane, propane–
hydrogen, helium–argon, and some binary mixtures consisting of the heavier hydrocarbons 
from n-pentane to n-octane (see also Chap. 9). Nevertheless, for most of these systems, the 
description of the new data by the developed equation of state is already quite satisfactory. 

Table 6.4 presents a summary of the available data for thermal and caloric properties of all 
considered binary mixtures. For each mixture, the table provides information on the 
temperature, pressure, and composition ranges covered by the data as well as the number of 
data points available and used for the development of the new wide-range equation of state. A 
detailed listing of all binary data sets is provided in the appendix of this work (see 
Table A2.1). 

                                                
42  Recently, Plantier et al. (2005) reported speed of sound data for methane–n-butane with a particular 

focus on the critical state. These are the only available caloric properties for this system. 

6.1   Data for Binary Mixtures 
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Table 6.4 Summary of the available data for the 98 considered binary mixtures 

Binary mixture Number of Covered ranges 
 data points Temperature Pressure Compositionc,d

 totala usedb T/K p/MPa x

CH4–N2        
p T data 3619 1465 82.0 – 673 0.04 – 507 0.02 – 0.90 
Speed of sound 693 456 170 – 400 0.1 – 750 0.05 – 0.54 
Isobaric heat capacity 111 – 110 – 275 3.0 – 10.0 0.47 – 0.70 
Enthalpy differences 247 – 107 – 367 0.1 – 10.0 0.10 – 0.75 
Saturated liquid densitye 197 21 95.0 – 183 0.1 – 4.9 0.00 – 1.00 
VLE data 1237 439 78.4 – 190 0.02 – 5.1 0.00 – 1.00 
Total 6104 2381 78.4 – 673 0.02 – 750 0.00 – 1.00 

CH4–CO2        
p T data 2392 1107 220 – 673 0.03 – 99.9 0.06 – 0.98 
Speed of sound 324 324 200 – 450 0.1 – 17.3 0.05 – 0.30 
Isobaric heat capacity 249 – 313 – 424 0.2 – 15.5 0.58 – 0.86 
VLE data 616 156 143 – 301 0.9 – 8.5 0.00 – 0.99 
Total 3581 1587 143 – 673 0.03 – 99.9 0.00 – 0.99 

CH4–C2H6        
p T data 3759 2001 91.0 – 394 0.00 – 35.9 0.04 – 0.81 
Isochoric heat capacity 785 625 101 – 335 67.1 – 588  0.10 – 0.84 
Speed of sound 810 411 200 – 375 0.00 – 20.1 0.05 – 0.65 
Isobaric heat capacity 98 72 110 – 350 0.6 – 30.0 0.15 – 0.29 
Enthalpy differences 896 22 110 – 525 0.2 – 16.5 0.06 – 0.75 
Second acoustic virial coeff. 9 – 200 – 375  0.20 
Saturated liquid densitye 45 20 105 – 250 0.03 – 6.3 0.10 – 0.95 
VLE data 901 183 111 – 302 0.01 – 6.9 0.00 – 0.99 
Total 7303 3334 91.0 – 525 0.00 – 35.9 0.00 – 0.99 

CH4–C3H8        
p T data 2901 1889 91.0 – 511 0.03 – 68.9 0.01 – 0.90 
Speed of sound 225 222 213 – 375 0.05 – 17.0 0.10 – 0.15 
Isobaric heat capacity 280 215 100 – 422 1.7 – 13.8 0.09 – 0.77 
Enthalpy differences 238 99 110 – 366 0.00 – 14.0 0.05 – 0.32 
Second acoustic virial coeff. 12 – 225 – 375  0.15 
Saturated liquid densitye 20 20 105 – 130 0.03 – 0.3 0.14 – 0.70 
VLE data 558 266 91.7 – 363 0.00 – 10.2 0.00 – 1.00 
Total 4234 2711 91.0 – 511 0.00 – 68.9 0.00 – 1.00 

CH4–n-C4H10        
p T data 1681 879 108 – 573 0.1 – 68.9 0.01 – 1.00 
Speed of sound 43 – 311 2.1 – 17.2 0.11 – 0.84 
Saturated liquid densitye 31 31 105 – 140 0.1 – 0.6 0.07 – 0.41 
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Table 6.4 (continued)

Binary mixture Number of Covered ranges 
 data points Temperature Pressure Compositionc,d

 totala usedb T/K p/MPa x

CH4–n-C4H10 (continued)        
VLE data 603 117 144 – 411 0.1 – 13.3 0.02 – 1.00 
Total 2358 1027 105 – 573 0.1 – 68.9 0.01 – 1.00 

CH4–i-C4H10        
p T data 593 582 95.0 – 511 0.04 – 34.5 0.04 – 0.84 
Saturated liquid densitye 17 17 110 – 140 0.1 – 0.6 0.08 – 0.51 
VLE data 171 110 198 – 378 0.5 – 11.8 0.02 – 1.00 
Total 781 709 95.0 – 511 0.04 – 34.5 0.02 – 1.00 

CH4–n-C5H12        
p T data 1106 699 293 – 511 0.1 – 34.5 0.00 – 1.00 
VLE data 812 40 173 – 461 0.1 – 17.1 0.03 – 1.00 
Total 1918 739 173 – 511 0.1 – 34.5 0.00 – 1.00 

CH4–i-C5H12        
p T data 332 256 257 – 478 1.4 – 10.3 0.21 – 0.85 
VLE data 29 13 344 – 450 2.8 – 6.9 0.70 – 1.00 
Total 361 269 257 – 478 1.4 – 10.3 0.21 – 1.00 

CH4–n-C6H14        
p T data 971 244 183 – 423 0.5 – 41.4 0.01 – 0.99 
VLE data 472 52 182 – 444 0.1 – 19.8 0.00 – 0.99 
Total 1443 296 182 – 444 0.1 – 41.4 0.00 – 0.99 

CH4–n-C7H16        
p T data 1038 292 278 – 511 0.3 – 69.8 0.00 – 0.99 
VLE data 218 44 200 – 511 0.01 – 24.9 0.10 – 0.99 
Total 1256 336 200 – 511 0.01 – 69.8 0.00 – 0.99 

CH4–n-C8H18        
p T data 89 89 223 – 423 1.0 – 7.1 0.00 – 0.97 
Speed of sound 144 71 293 – 373 25.0 – 100 0.02 
VLE data 35 28 298 – 423 1.0 – 7.1 0.71 – 0.97 
Total 268 188 223 – 423 1.0 – 100 0.00 – 0.97 

CH4–H2        
p T data 1696 1427 130 – 600 0.2 – 107 0.05 – 0.91 
VLE data 110 90 90.3 – 174 1.0 – 27.6 0.00 – 0.35 
Total 1806 1517 90.3 – 600 0.2 – 107 0.00 – 0.91 

6.1   Data for Binary Mixtures 
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Table 6.4 (continued)

Binary mixture Number of Covered ranges 
 data points Temperature Pressure Compositionc,d

 totala usedb T/K p/MPa x

CH4–O2        
VLE data 3 – 93.2 – 107 0.1 – 0.4 0.9989 – 0.9990
Total 3 – 93.2 – 107 0.1 – 0.4 0.9989 – 0.9990

CH4–CO        
p T data 456 447 116 – 353 0.4 – 160 0.03 – 0.80 
VLE data 55 54 91.4 – 178 0.03 – 4.7 0.03 – 0.97 
Total 511 501 91.4 – 353 0.03 – 160 0.03 – 0.97 

CH4–H2O        
p T data 384 253 398 – 699 0.1 – 63.2 0.08 – 0.96 
Total 384 253 398 – 699 0.1 – 63.2 0.08 – 0.96 

CH4–He        
VLE data 520 489 93.2 – 194 0.1 – 26.2 0.00 – 0.34 
Total 520 489 93.2 – 194 0.1 – 26.2 0.00 – 0.34 

CH4–Ar        
p T data 36 36 91.0 – 143 0.1 – 122 0.15 – 0.84 
VLE data 163 51 105 – 178 0.2 – 5.1 0.02 – 0.96 
Total 199 87 91.0 – 178 0.1 – 122 0.02 – 0.96 

N2–CO2        
p T data 2856 823 209 – 673 0.1 – 274 0.10 – 0.98 
Speed of sound 65 65 250 – 350 0.5 – 10.3 0.50 
Isobaric heat capacity 203 203 313 – 363 0.2 – 16.5 0.68 – 0.93 
Saturated liquid densitye 23 – 209 – 268 10.8 – 21.4 0.40 – 0.50 
VLE data 380 115 209 – 303 1.0 – 21.4 0.40 – 1.00 
Total 3527 1206 209 – 673 0.1 – 274 0.10 – 1.00 

N2–C2H6        
p T data 812 564 105 – 478 0.2 – 62.1 0.00 – 0.96 
Speed of sound 112 112 250 – 400 0.05 – 30.2 0.30 – 0.70 
Isobaric heat capacity 36 – 110 – 270 3.0 – 5.1 0.41 
Enthalpy differences 188 77 110 – 343 0.2 – 14.2 0.41 – 0.75 
Saturated liquid densitye 11 4 105 – 138 0.4 – 2.8 0.73 – 0.96 
VLE data 901 79 92.8 – 302 0.02 – 13.5 0.00 – 1.00 
Total 2060 836 92.8 – 478 0.02 – 62.1 0.00 – 1.00 

N2–C3H8        
p T data 363 294 100 – 422 0.3 – 42.1 0.00 – 0.98 
Saturated liquid densitye 6 6 100 – 115 0.4 – 0.9 0.93 – 0.98 
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Table 6.4 (continued)

Binary mixture Number of Covered ranges 
 data points Temperature Pressure Compositionc,d

 totala usedb T/K p/MPa x

N2–C3H8 (continued)        
VLE data 349 117 78.0 – 353 0.03 – 21.9 0.47 – 1.00 
Total 718 417 78.0 – 422 0.03 – 42.1 0.00 – 1.00 

N2–n-C4H10        
p T data 942 925 270 – 478 0.2 – 68.9 0.02 – 0.91 
Saturated liquid densitye 30 – 339 – 380 1.2 – 22.1 0.50 – 0.98 
VLE data 292 108 153 – 422 0.2 – 29.1 0.39 – 1.00 
Total 1264 1033 153 – 478 0.2 – 68.9 0.02 – 1.00 

N2–i-C4H10        
p T data 64 46 255 – 311 0.2 – 20.8 0.03 – 0.99 
VLE data 98 31 120 – 394 0.2 – 20.8 0.54 – 1.00 
Total 162 77 120 – 394 0.2 – 20.8 0.03 – 1.00 

N2–n-C5H12        
p T data 84 78 277 – 378 0.3 – 20.8 0.01 – 1.00 
VLE data 42 37 277 – 378 0.3 – 20.8 0.60 – 1.00 
Total 126 115 277 – 378 0.3 – 20.8 0.01 – 1.00 

N2–i-C5H12        
p T data 94 88 278 – 377 0.2 – 20.8 0.01 – 1.00 
VLE data 47 46 278 – 377 0.2 – 20.8 0.56 – 1.00 
Total 141 134 278 – 377 0.2 – 20.8 0.01 – 1.00 

N2–n-C6H14        
VLE data 52 25 311 – 444 1.7 – 34.5 0.40 – 0.98 
Total 52 25 311 – 444 1.7 – 34.5 0.40 – 0.98 

N2–n-C7H16        
VLE data 114 41 305 – 497 1.2 – 69.1 0.28 – 0.99 
Total 114 41 305 – 497 1.2 – 69.1 0.28 – 0.99 

N2–n-C8H18        
p T data 144 143 293 – 373 25.0 – 100 0.79 
Speed of sound 144 144 293 – 373 25.0 – 100 0.79 
VLE data 26 – 293 – 373 3.2 – 35.0 0.65 – 1.00 
Total 314 287 293 – 373 3.2 – 100 0.65 – 1.00 

N2–H2        
p T data 1488 1479 270 – 573 0.1 – 307 0.15 – 0.87 
VLE data 45 19 77.4 – 113 0.5 – 15.2 0.01 – 0.39 
Total 1533 1498 77.4 – 573 0.1 – 307 0.01 – 0.87 

6.1   Data for Binary Mixtures 
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Table 6.4 (continued)

Binary mixture Number of Covered ranges 
 data points Temperature Pressure Compositionc,d

 totala usedb T/K p/MPa x

N2–O2        
p T data 79 – 66.9 – 333 0.1 – 15.7 0.20 – 0.89 
VLE data 526 475 63.0 – 136 0.00 – 3.0 0.01 – 1.00 
Total 605 475 63.0 – 333 0.00 – 15.7 0.01 – 1.00 

N2–CO        
p T data 343 343 273 – 353 0.3 – 30.1 0.03 – 0.03 
VLE data 117 106 70.0 – 123 0.02 – 2.7 0.07 – 1.00 
Total 460 449 70.0 – 353 0.02 – 30.1 0.03 – 1.00 

N2–H2O        
p T data 275 212 429 – 707 2.1 – 286 0.05 – 0.95 
Total 275 212 429 – 707 2.1 – 286 0.05 – 0.95 

N2–He        
p T data 2669 1259 77.2 – 423 0.1 – 1027 0.06 – 0.99 
Speed of sound 112 – 157 – 298 200 – 1000 0.50 
VLE data 585 – 64.9 – 126 1.2 – 83.1 0.00 – 0.58 
Total 3366 1259 64.9 – 423 0.1 – 1027 0.00 – 0.99 

N2–Ar        
p T data 767 652 73.8 – 423 0.01 – 800 0.16 – 0.84 
VLE data 487 399 72.2 – 134 0.1 – 2.8 0.00 – 0.98 
Total 1254 1051 72.2 – 423 0.01 – 800 0.00 – 0.98 

CO2–C2H6        
p T data 2522 1266 220 – 478 0.03 – 68.9 0.01 – 0.90 
Isochoric heat capacity 259 – 218 – 341 67.6 – 902  0.26 – 0.75 
Speed of sound 69 – 220 – 450 0.1 – 1.3 0.40 
Isobaric heat capacity 56 – 303 – 393 0.00 – 52.9 0.50 
Enthalpy differences 79 – 230 – 350 15.2 – 18.4 0.10 – 0.90 
VLE data 492 216 207 – 298 0.3 – 6.6 0.01 – 0.99 
Total 3477 1482 207 – 478 0.00 – 68.9 0.01 – 0.99 

CO2–C3H8        
p T data 1421 862 278 – 511 0.1 – 70.6 0.07 – 0.97 
Saturated liquid densitye 51 – 278 – 311 0.7 – 6.7 0.06 – 0.98 
VLE data 619 89 211 – 361 0.1 – 6.9 0.02 – 0.99 
Total 2091 951 211 – 511 0.1 – 70.6 0.02 – 0.99 

CO2–n-C4H10        
p T data 125 – 311 – 360 1.1 – 10.6 0.03 – 0.20 
Excess molar enthalpy 20 20 221 – 242 0.8 – 4.4 0.17 – 0.85 
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Table 6.4 (continued)

Binary mixture Number of Covered ranges 
 data points Temperature Pressure Compositionc,d

 totala usedb T/K p/MPa x

CO2–n-C4H10 (continued)        
VLE data 438 223 228 – 418 0.03 – 8.2 0.06 – 1.00 
Total 583 243 221 – 418 0.03 – 10.6 0.03 – 1.00 

CO2–i-C4H10        
p T data 126 – 311 – 360 1.0 – 10.5 0.03 – 0.20 
Saturated liquid densitye 29 – 311 – 394 0.7 – 7.2 0.12 – 0.97 
VLE data 94 73 311 – 394 0.6 – 7.4 0.10 – 0.99 
Total 249 73 311 – 394 0.6 – 10.5 0.03 – 0.99 

CO2–n-C5H12        
p T data 804 366 278 – 423 0.2 – 65.0 0.01 – 0.99 
VLE data 214 72 253 – 459 0.2 – 9.9 0.02 – 0.99 
Total 1018 438 253 – 459 0.2 – 65.0 0.01 – 0.99 

CO2–i-C5H12        
p T data 106 91 278 – 378 0.2 – 9.4 0.00 – 0.99 
VLE data 53 36 278 – 378 0.2 – 9.4 0.03 – 0.99 
Total 159 127 278 – 378 0.2 – 9.4 0.00 – 0.99 

CO2–n-C6H14        
VLE data 20 20 298 – 313 0.4 – 7.7 0.08 – 0.95 
Total 20 20 298 – 313 0.4 – 7.7 0.08 – 0.95 

CO2–n-C7H16        
p T data 141 101 299 – 459 0.1 – 55.5 0.01 – 0.98 
VLE data 64 44 311 – 477 0.2 – 13.3 0.05 – 0.98 
Total 205 145 299 – 477 0.1 – 55.5 0.01 – 0.98 

CO2–n-C8H18        
VLE data 20 16 313 – 348 1.5 – 11.4 0.11 – 0.86 
Total 20 16 313 – 348 1.5 – 11.4 0.11 – 0.86 

CO2–H2        
p T data 413 316 273 – 473 0.2 – 50.7 0.01 – 0.75 
VLE data 138 68 220 – 298 1.1 – 20.3 0.00 – 0.16 
Total 551 384 220 – 473 0.2 – 50.7 0.00 – 0.75 

CO2–O2        
VLE data 144 – 223 – 283 1.0 – 13.2 0.00 – 0.78 
Total 144 – 223 – 283 1.0 – 13.2 0.00 – 0.78 

6.1   Data for Binary Mixtures 
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Table 6.4 (continued)

Binary mixture Number of Covered ranges 
 data points Temperature Pressure Compositionc,d

 totala usedb T/K p/MPa x

CO2–CO        
p T data 75 – 323 – 423 0.1 – 6.5 0.43 
Total 75 – 323 – 423 0.1 – 6.5 0.43 

CO2–H2O        
p T data 448 446 323 – 699 0.1 – 34.6 0.02 – 0.79 
VLE data 201 – 383 – 623 10.0 – 350 0.57 – 1.00 
Total 649 446 323 – 699 0.1 – 350 0.02 – 1.00 

CO2–He        
p T data 1401 1278 253 – 800 0.2 – 58.8 0.06 – 0.96 
VLE data 30 – 253 – 293 3.0 – 14.1 0.00 – 0.05 
Total 1431 1278 253 – 800 0.2 – 58.8 0.00 – 0.96 

CO2–Ar        
p T data 572 496 288 – 373 0.3 – 101 0.06 – 0.87 
VLE data 31 10 233 – 288 2.6 – 13.2 0.03 – 0.35 
Total 603 506 233 – 373 0.3 – 101 0.03 – 0.87 

C2H6–C3H8        
p T data 697 360 108 – 322 0.00 – 13.8 0.00 – 0.89 
Isobaric heat capacity 16 – 120 – 270 5.1 0.39 
Enthalpy differences 156 – 110 – 343 0.1 – 14.2 0.20 – 0.39 
Excess molar enthalpy 157 – 323 – 373 5.0 – 15.0 0.01 – 0.98 
VLE data 494 286 128 – 369 0.00 – 5.2 0.00 – 1.00 
Total 1520 646 108 – 373 0.00 – 15.0 0.00 – 1.00 

C2H6–n-C4H10        
p T data 269 223 269 – 414 0.5 – 13.8 0.05 – 0.83 
VLE data 379 114 235 – 419 0.2 – 5.8 0.05 – 0.98 
Total 648 337 235 – 419 0.2 – 13.8 0.05 – 0.98 

C2H6–i-C4H10        
VLE data 99 34 203 – 394 0.00 – 5.4 0.04 – 0.98 
Total 99 34 203 – 394 0.00 – 5.4 0.04 – 0.98 

C2H6–n-C5H12        
p T data 1508 1422 278 – 511 0.1 – 68.9 0.01 – 0.90 
Isochoric heat capacity 57 – 309 231 – 491  0.01 – 0.32 
VLE data 67 59 278 – 444 0.3 – 6.8 0.02 – 1.00 
Total 1632 1481 278 – 511 0.1 – 68.9 0.01 – 1.00 
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Table 6.4 (continued)

Binary mixture Number of Covered ranges 
 data points Temperature Pressure Compositionc,d

 totala usedb T/K p/MPa x

C2H6–n-C6H14        
VLE data 46 43 298 – 450 0.2 – 7.9 0.08 – 0.99 
Total 46 43 298 – 450 0.2 – 7.9 0.08 – 0.99 

C2H6–n-C7H16        
p T data 212 170 275 – 521 0.3 – 8.6 0.02 – 0.73 
VLE data 533 – 235 – 540 0.3 – 8.8 0.02 – 1.00 
Total 745 170 235 – 540 0.3 – 8.8 0.02 – 1.00 

C2H6–n-C8H18        
p T data 64 51 273 – 373 0.4 – 5.3 0.02 – 0.95 
VLE data 82 47 273 – 373 0.4 – 6.8 0.02 – 0.95 
Total 146 98 273 – 373 0.4 – 6.8 0.02 – 0.95 

C2H6–H2        
p T data 552 382 275 – 422 0.2 – 26.2 0.10 – 0.80 
VLE data 117 61 139 – 283 0.7 – 53.3 0.00 – 0.40 
Total 669 443 139 – 422 0.2 – 53.3 0.00 – 0.80 

C2H6–CO        
VLE data 22 21 173 – 273 0.9 – 11.7 0.01 – 0.83 
Total 22 21 173 – 273 0.9 – 11.7 0.01 – 0.83 

C3H8–n-C4H10        
p T data 899 545 239 – 411 0.1 – 13.8 0.15 – 0.90 
VLE data 459 60 237 – 420 0.03 – 11.0 0.05 – 0.99 
Total 1358 605 237 – 420 0.03 – 13.8 0.05 – 0.99 

C3H8–i-C4H10        
p T data 788 495 200 – 400 0.1 – 35.4 0.15 – 0.86 
Isochoric heat capacity 135 – 203 – 345 484 – 649  0.30 – 0.70 
Isobaric heat capacity 23 – 293 – 353 0.1 – 1.2 0.50 
VLE data 288 148 237 – 394 0.04 – 4.2 0.00 – 1.00 
Total 1234 643 200 – 400 0.04 – 35.4 0.00 – 1.00 

C3H8–n-C5H12        
p T data 283 267 321 – 461 0.1 – 4.6 0.12 – 0.86 
VLE data 258 – 321 – 468 0.4 – 4.5 0.04 – 1.00 
Total 541 267 321 – 468 0.1 – 4.6 0.04 – 1.00 

C3H8–i-C5H12        
p T data 640 628 273 – 573 0.1 – 8.1 0.10 – 0.90 

6.1   Data for Binary Mixtures 
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Table 6.4 (continued)

Binary mixture Number of Covered ranges 
 data points Temperature Pressure Compositionc,d

 totala usedb T/K p/MPa x

C3H8–i-C5H12 (continued)        
VLE data 89 78 273 – 453 0.1 – 4.6 0.02 – 0.97 
Total 729 706 273 – 573 0.1 – 8.1 0.02 – 0.97 

C3H8–n-C6H14        
p T data 235 203 325 – 497 0.1 – 5.0 0.08 – 0.86 
VLE data 401 – 288 – 497 0.1 – 5.0 0.02 – 0.96 
Total 636 203 288 – 497 0.1 – 5.0 0.02 – 0.96 

C3H8–n-C7H16        
VLE data 197 40 333 – 533 2.1 – 5.2 0.02 – 0.98 
Total 197 40 333 – 533 2.1 – 5.2 0.02 – 0.98 

C3H8–n-C8H18        
p T data 155 136 313 – 550 0.7 – 5.9 0.04 – 0.79 
Total 155 136 313 – 550 0.7 – 5.9 0.04 – 0.79 

C3H8–H2        
p T data 73 – 298 – 348 0.3 – 5.1 0.73 – 0.84 
VLE data 215 140 172 – 361 1.4 – 55.2 0.01 – 0.67 
Total 288 140 172 – 361 0.3 – 55.2 0.01 – 0.84 

C3H8–CO        
VLE data 37 37 148 – 323 1.4 – 15.2 0.02 – 0.43 
Total 37 37 148 – 323 1.4 – 15.2 0.02 – 0.43 

C3H8–H2O        
p T data 55 47 529 – 663 20.0 – 330 0.29 – 0.98 
Total 55 47 529 – 663 20.0 – 330 0.29 – 0.98 

n-C4H10–i-C4H10        
p T data 352 16 240 – 380 0.03 – 7.1 0.21 – 0.80 
VLE data 228 197 273 – 374 0.1 – 2.0 0.02 – 0.98 
Total 580 213 240 – 380 0.03 – 7.1 0.02 – 0.98 

n-C4H10–n-C5H12        
p T data 73 65 358 – 464 1.0 – 3.7 0.13 – 0.86 
VLE data 195 – 298 – 464 0.1 – 3.7 0.10 – 0.98 
Total 268 65 298 – 464 0.1 – 3.7 0.10 – 0.98 

n-C4H10–n-C6H14        
p T data 157 152 375 – 502 0.6 – 3.9 0.10 – 0.90 
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Table 6.4 (continued)

Binary mixture Number of Covered ranges 
 data points Temperature Pressure Compositionc,d

 totala usedb T/K p/MPa x

n-C4H10–n-C6H14 (continued) 
VLE data 365 – 358 – 502 0.6 – 3.9 0.10 – 0.90 
Total 522 152 358 – 502 0.6 – 3.9 0.10 – 0.90 

n-C4H10–n-C7H16        
p T data 255 250 329 – 530 0.3 – 4.1 0.06 – 0.84 
VLE data 477 – 329 – 540 0.3 – 4.1 0.02 – 0.99 
Total 732 250 329 – 540 0.3 – 4.1 0.02 – 0.99 

n-C4H10–n-C8H18        
p T data 97 72 339 – 555 0.7 – 4.3 0.05 – 0.82 
Total 97 72 339 – 555 0.7 – 4.3 0.05 – 0.82 

n-C4H10–H2        
VLE data 64 62 328 – 394 2.8 – 16.9 0.02 – 0.27 
Total 64 62 328 – 394 2.8 – 16.9 0.02 – 0.27 

n-C4H10–H2O        
p T data 219 149 311 – 707 0.7 – 310 0.10 – 0.98 
VLE datay 51 – 600 – 700 19.3 – 276 0.65 – 0.98 
Total 270 149 311 – 707 0.7 – 310 0.10 – 0.98 

n-C4H10–Ar        
p T data 70 66 340 – 380 1.4 – 18.5 0.02 – 0.82 
VLE data 35 21 340 – 380 1.4 – 18.5 0.02 – 0.56 
Total 105 87 340 – 380 1.4 – 18.5 0.02 – 0.82 

i-C4H10–H2        
VLE data 21 – 311 – 394 3.4 – 20.7 0.02 – 0.25 
Total 21 – 311 – 394 3.4 – 20.7 0.02 – 0.25 

i-C4H10–H2O        
p T data 66 – 547 – 695 13.5 – 306 0.50 – 0.98 
VLE datay 77 – 547 – 695 13.5 – 306 0.50 – 0.98 
Total 143 – 547 – 695 13.5 – 306 0.50 – 0.98 

n-C5H12–i-C5H12        
VLE data 13 – 328 – 385 0.2 – 0.8 0.02 – 0.94 
Total 13 – 328 – 385 0.2 – 0.8 0.02 – 0.94 

n-C5H12–n-C6H14        
p T data 319 – 273 – 348 0.1 – 40.0 0.10 – 0.90 

6.1   Data for Binary Mixtures 
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Table 6.4 (continued)

Binary mixture Number of Covered ranges 
 data points Temperature Pressure Compositionc,d

 totala usedb T/K p/MPa x

n-C5H12–n-C6H14 (continued) 
VLE data 8 – 298 – 298 0.03 – 0.1 0.10 – 0.89 
Total 327 – 273 – 348 0.03 – 40.0 0.10 – 0.90 

n-C5H12–n-C7H16        
p T data 326 – 273 – 348 0.1 – 40.0 0.10 – 0.90 
VLE data 26 – 404 – 526 1.0 – 3.1 0.10 – 0.90 
Total 352 – 273 – 526 0.1 – 40.0 0.10 – 0.90 

n-C5H12–n-C8H18        
p T data 9 – 298 0.1 0.10 – 0.89 
VLE data 61 – 292 – 434 0.1 – 1.5 0.05 – 0.95 
Total 70 – 292 – 434 0.1 – 1.5 0.05 – 0.95 

n-C5H12–H2O        
p T data 55 55 647 4.3 – 40.9 0.31 – 0.97 
Total 55 55 647 4.3 – 40.9 0.31 – 0.97 

n-C6H14–n-C7H16        
p T data 452 35 273 – 363 0.1 – 71.7 0.09 – 0.91 
Speed of sound 28 – 298 0.1 0.01 – 0.96 
VLE data 29 14 303 – 367 0.01 – 0.1 0.03 – 0.97 
Total 509 49 273 – 367 0.01 – 71.7 0.01 – 0.97 

n-C6H14–n-C8H18        
p T data 61 – 283 – 313 0.1 0.07 – 0.94 
Total 61 – 283 – 313 0.1 0.07 – 0.94 

n-C6H14–H2        
p T data 423 193 278 – 511 1.4 – 68.9 0.19 – 0.79 
VLE data 134 98 278 – 478 0.03 – 68.9 0.01 – 0.69 
Total 557 291 278 – 511 0.03 – 68.9 0.01 – 0.79 

n-C6H14–H2O        
p T data 940 88 327 – 699 0.1 – 247 0.01 – 0.96 
Total 940 88 327 – 699 0.1 – 247 0.01 – 0.96 

n-C7H16–n-C8H18        
p T data 27 – 293 – 298 0.1 0.10 – 0.90 
VLE data 43 20 313 – 394 0.00 – 0.1 0.04 – 0.97 
Total 70 20 293 – 394 0.00 – 0.1 0.04 – 0.97 
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Table 6.4 (continued)

Binary mixture Number of Covered ranges 
 data points Temperature Pressure Compositionc,d

 totala usedb T/K p/MPa x

n-C7H16–H2        
VLE data 29 27 424 – 499 2.5 – 78.5 0.02 – 0.81 
Total 29 27 424 – 499 2.5 – 78.5 0.02 – 0.81 

n-C8H18–H2O        
p T data 28 28 623 3.1 – 15.3 0.15 – 0.77 
Total 28 28 623 3.1 – 15.3 0.15 – 0.77 

H2–CO        
p T data 54 54 298 0.1 – 17.2 0.34 – 0.67 
VLE data 81 80 68.2 – 122 1.7 – 24.1 0.35 – 0.97 
Total 135 134 68.2 – 298 0.1 – 24.1 0.34 – 0.97 

H2–He        
VLE data 264 – 15.5 – 32.5 0.2 – 10.4 0.00 – 0.36 
Total 264 – 15.5 – 32.5 0.2 – 10.4 0.00 – 0.36 

O2–H2O        
p T data 154 154 472 – 673 19.5 – 324 0.06 – 0.94 
Total 154 154 472 – 673 19.5 – 324 0.06 – 0.94 

O2–He        
VLE data 37 – 77.4 – 143 1.7 – 13.8 0.00 – 0.09 
Total 37 – 77.4 – 143 1.7 – 13.8 0.00 – 0.09 

O2–Ar        
p T data 36 – 70.4 – 88.8 0.1 0.10 – 0.87 
VLE data 616 51 83.8 – 139 0.1 – 2.6 0.00 – 1.00 
Total 652 51 70.4 – 139 0.1 – 2.6 0.00 – 1.00 

CO–He        
VLE data 98 – 77.4 – 128 0.7 – 13.8 0.00 – 0.17 
Total 98 – 77.4 – 128 0.7 – 13.8 0.00 – 0.17 

CO–Ar        
VLE data 16 15 123 – 137 1.5 – 3.8 0.06 – 0.92 
Total 16 15 123 – 137 1.5 – 3.8 0.06 – 0.92 

H2O–Ar        
p T data 152 152 477 – 663 10.4 – 337 0.05 – 0.80 
Total 152 152 477 – 663 10.4 – 337 0.05 – 0.80 

6.1   Data for Binary Mixtures 
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Table 6.4 (continued)

Binary mixture Number of Covered ranges 
 data points Temperature Pressure Compositionc,d

 totala usedb T/K p/MPa x

He–Ar        
p T data 500 – 143 – 323 0.2 – 72.3 0.20 – 0.78 
Speed of sound 50 – 298 198 – 1971 0.10 – 0.50 
VLE data 288 – 91.4 – 160 1.4 – 422 0.40 – 1.00 
Total 838 – 91.4 – 323 0.2 – 1971 0.10 – 1.00 
a Number of all available data points. 
b Number of data points used for the development of the new wide-range equation of state. 
c Mole fractions of the second component of the binary mixture, i.e. component B of mixture A–B. 

Values of 0.00 and 1.00 result from a mixture composition close to a pure component. 
d The composition range for VLE data corresponds to bubble point compositions, unless otherwise 

stated.
e Listed separately due to a different data format. Saturated liquid (and vapour) densities may also be 

tabulated as ordinary p T or VLE data. 
y VLE data set contains pTy data only. The composition range corresponds to dew point compositions.
 Density in kg m 3 instead of pressure. 

6.2 Data for Natural Gases and Other Multi-Component Mixtures 

The present database comprises data for natural gases and other multi-component mixtures of 
more than 300 different compositions43 including, aside from many ordinary natural gases, for 
example, the following types of multi-component mixtures: 

Natural gases containing high fractions of methane, nitrogen, carbon dioxide, or ethane 

Natural gases containing substantial amounts of ethane, propane, and heavier alkanes 

Natural gases containing high fractions of hydrogen (natural gas–hydrogen mixtures) 

Natural gases containing large amounts of coke-oven constituents 

Rich natural gases44

LNG mixtures 

Ternary mixtures of light or heavier hydrocarbons45, such as propane–n-butane–isobutane 
and n-pentane–n-hexane–n-heptane 

                                                
43  VLE data are not considered in this number. 
44  Rich natural gases contain large amounts of ethane and heavier alkanes (e.g. 18 mole-% ethane, 

8 mole-% propane, 3 mole-% n-butane, 0.5 mole-% n-pentane, 0.2 mole-% n-hexane) and fractions 
of methane down to 50 mole-%. 

45  The thermodynamic properties of hydrocarbon mixtures are of particular interest in connection with 
the production and refining of petroleum. Moreover, binary and ternary mixtures of propane, 
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Other ternary and multi-component mixtures 

Some of the covered data contain high fractions of hydrogen sulphide or small amounts of the 
further secondary alkanes n-nonane and n-decane beside the 18 components considered in this 
work (see Table 4.2). The three further natural gas components n-nonane, n-decane, and 
hydrogen sulphide will be included in an extended version of the developed wide-range 
equation of state in the near future (see also Chap. 9). 

A summary of the thermal and caloric properties available for natural gases and other multi-
component mixtures of natural gas components is shown in Table 6.5. The table provides 
information on the covered temperature and pressure ranges as well as the number of data 
points. Detailed listings of all data sets and the compositions of the mixture data are tabulated 
in the appendix (see Tables A2.2 – A2.5).  

Table 6.5 Summary of the available data for thermal and caloric properties of natural gases and 
other multi-component mixtures 

Data type Number of Covered ranges Maximum 
 data points Temperature Pressure number of 

T/K p/MPa components 

p T data 21769 91.0 – 573 0.03 – 99.9 18 
Speed of sound 1337 213 – 414 0.00 – 70.0 13 
Isobaric heat capacity 325 105 – 350 0.5 – 30.0 8 
Enthalpy differences 1166 105 – 422 0.2 – 16.5 10 
Saturated liquid density 124 105 – 251 0.04 – 3.2 8 
VLE dataa 2284 77.8 – 450 0.1 – 27.6 4 

Total 27005 77.8 – 573 0.00 – 99.9 18 
a The total number of VLE data comprises 2,234 pTxy data, 17 pTx data, and 33 pTy data. 

The data are dominated by a huge amount of p T data in the gas phase covering temperatures 
from 270 K to 350 K at pressures up to 30 MPa. Nevertheless, the comparatively few p T
data measured at temperatures below 270 K enable, along with the accurate and wide ranging 
data of important and related binary mixtures46 (e.g. methane–nitrogen and methane–ethane), 
a well-founded estimation of the uncertainty in gas phase densities at temperatures below 
270 K. The most accurate caloric properties are those for speeds of sound and enthalpy 
differences. Most of these data cover the temperature range from 250 K to 350 K at pressures 
up to 12 MPa and 20 MPa, respectively.

                                                                                                                                                        
n-butane, and isobutane are considered as promising alternative refrigerants in modern refrigeration 
and heat-pump systems due to their negligible global warming potential. 

46  For instance, accurate and wide ranging density and speed of sound data for the binary mixtures 
methane–nitrogen and methane–ethane cover large reduced temperature ranges which include those 
relevant to natural gases (see also Chap. 8). 

6.2   Data for Natural Gases and Other Multi-Component Mixtures 
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As mentioned in the previous sections, the data situation for properties of natural gases and 
other multi-component mixtures in the liquid phase is poor. The evaluation of the new 
equation of state is mainly based on experimental data for the saturated liquid densities of 
LNG-like multi-component mixtures measured by Hiza and Haynes (1980) and Haynes 
(1982) covering the temperature range from 100 K to 140 K. 

Almost all collected VLE data correspond to data measured for ternary mixtures of the 
considered natural gas components. Further data used for comparisons, which are not 
included in the tables of this chapter, are, for example, the recent dew point measurements for 
a number of different natural gas and other multi-component mixtures of Avila et al. [Avila et
al. (2002a-c), Avila et al. (2003), Jarne et al. (2004a)] and Blanco et al. [Blanco et al. (2000), 
Jarne et al. (2004b)], and Mørch et al. (2006). 

In an extended version of the developed mixture model, the very accurate description of the 
properties of dry air (and possibly also humid air) will be additionally considered in the near 
future (see also Chap. 9). Therefore, an additional data set was established for the properties 
of dry air, treated as a three-component mixture of nitrogen, oxygen, and argon, which is not 
included in the database presented here47. The data set comprises more than 3,000 data of 
thermal and caloric properties and is almost identical to the data set used by Lemmon et al.
(2000) for the development of a fundamental equation for the properties of dry air. This data 
set will be updated by the new measurements being performed within the framework of the 
current research project “Advanced Adiabatic Compressed Air Energy Storage (AA-CAES)” 
of the European Union, which aims, among other things, to establish a database for the 
thermophysical properties of humid air over wide ranges of temperature, pressure, and 
composition. 

                                                
47  VLE data for ternary mixtures of nitrogen, oxygen, and argon are already included in Table 6.5. 
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7 The New Equation of State (GERG-2004) 

To fulfil the requirements for a new equation of state for natural gases as defined in Chap. 3, 
based on the pure substance equations of state for 18 natural gas components (see Chap. 4), 
the theoretical background and investigations regarding the development of multi-fluid 
mixture models (see Chap. 5), and the collected and assessed data for binary and multi-
component mixtures of natural gas components (see Chap. 6), a new equation of state for the 
thermodynamic properties of natural gases, similar gases, and other mixtures was developed 
in this work. The new equation of state is valid for wide ranges of temperature, pressure, and 
composition and covers the gas phase, the liquid phase, the supercritical region, and vapour-
liquid equilibrium states. The development of this equation was supported by the DVGW 
(German Technical and Scientific Association on Gas and Water) and European natural gas 
companies (E.ON Ruhrgas, Germany; Enagás, Spain; Gasunie, The Netherlands; Gaz de 
France, France; Snam Rete Gas, Italy; and Statoil, Norway), which are members of GERG 
(Groupe Européen de Recherches Gazières). The new formulation was adopted by GERG in 
2004 and called GERG-2004 equation of state or GERG-2004 for short, and is also referred to 
in the following as GERG-2004 formulation.  

Detailed descriptions of the mathematical structure of the new wide-range equation of state 
and the basic and advanced relations required for property calculations are provided in the 
first four sections of this chapter. The increased complexity of the mixture model demands a 
systematic approach in order to avoid inefficient and incorrect computer code. To generate 
fast and thermodynamically consistent computer codes for the calculation of thermodynamic 
properties for arbitrary types of mixtures, a modular approach was used. This approach 
enables modifications of single features of the model, e.g. the composition-dependent 
reducing functions, without rewriting the entire code. Furthermore, all of the presented 
relations between the Helmholtz free energy of the mixture and the thermodynamic properties 
and their derivatives can be applied to other multi-fluid mixture models based on a similar 
structure with composition-dependent reducing functions. Section 7.1 provides a 
comprehensive numerical description of the new equation of state. In Sec. 7.2, the basic 
derivatives and relations required for the calculation of several thermodynamic properties are 
presented. Further derivatives and advanced relations required for phase equilibrium and other 
property calculations are summarised in Sec. 7.3. Relations between activity coefficient 
models, excess Gibbs free energy models, and multi-fluid mixture models explicit in the 
reduced Helmholtz free energy  are given in Sec. 7.4. 

For the development of property calculation routines that allow for “blind” calculations of the 
thermodynamic properties of mixtures at arbitrary conditions, special algorithms are required 
for the verification of phase stability and the solution of the isothermal flash problem. 
Moreover, the calculation of saturation points and the construction of phase envelopes are of 
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practical importance. The basic principles of the respective algorithms used in this work are 
described in Secs. 7.5 – 7.7. The required properties and their derivatives that need to be 
calculated from the new equation of state were set up in the course of this work and are given 
in Sec. 7.3.

The algorithms used for stability analysis and pT flash calculations are based on the 
minimisation of the Gibbs free energy (see also Sec. 5.4.4). For the successful implementation 
of such advanced property calculation algorithms, a proper density solver is required that 
takes into account the special characteristics of the new mixture model (see Sec. 7.8). 

Aside from the solution of flash situations based on the minimisation of the Gibbs free energy 
of the overall equilibrium system, there is also the possibility of minimising the overall 
Helmholtz free energy of a mixture. This is of particular interest for the new equation of state 
and other mixture models developed as a multi-fluid approximation explicit in the Helmholtz 
free energy with the independent variables density, temperature, and composition. The basics 
of Helmholtz free energy based flash formulations and the advantage of such an approach are 
presented in Sec. 7.9. 

Aside from the accurate fundamental pure substance equations for each of the 18 natural gas 
components (see Table 4.2), the developed mixture model is based on correlation equations 
developed for binary mixtures. Important details of the development of the numerous binary 
equations and the new functional form (see Sec. 5.3.4) are given in Secs. 7.10 and 7.11. 

To investigate the problem of invariance (see Sec. 5.2.1) and the predictive capabilities of a 
mixture model with invariant reducing functions for the description of the thermodynamic 
properties of multi-component mixtures, an alternative (invariant) equation of state was 
developed. The results of the investigations are summarised in Sec. 7.12. 

Detailed information on the range of validity of the new equation of state and estimated 
uncertainties in selected thermal and caloric properties of binary and multi-component 
mixtures are given in Sec. 7.13.  

Based on the stability analysis and the pT flash and phase envelope algorithms described in 
Secs. 7.5 – 7.7, a comprehensive software package, which is briefly described in Sec. 7.14, 
was developed enabling the calculation of a number of thermodynamic properties from the 
new equation of state. 

Since the mixture model and the property calculation algorithms are not limited to the current 
number of considered components (N = 18), the variable N is continuously used in this work 
to denote the maximum number of components.  

To simplify the notation of certain relations, the Kronecker delta ij  (or sj ) is used [see 
Table 7.11 and Eqs. (7.107), (7.109), (7.125), (7.128), and (7.142)] and should not be 
confused with the reduced mixture density .
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7.1 Numerical Description of the New Equation of State for Natural 
Gases and Other Mixtures 

The new mixture model developed for natural gases, similar gases, and other mixtures is 
based on a multi-fluid approximation explicit in the reduced Helmholtz free energy  

( , , ) ( , , ) ( , , )x T x xo r , (7.1) 

where the o part represents the properties of the ideal-gas mixture at a given mixture density 
, temperature T, and molar composition x  according to  

o
o
o( , , ) ( , ) lnT x x T xi i i

i

N

1
 (7.2) 

and the residual part r  of the reduced Helmholtz free energy of the mixture is given by  
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where  is the reduced mixture density and  is the inverse reduced mixture temperature 
according to  

r ( )x
   and T x

T
r ( ) . (7.4) 

Equation (7.3) takes into account the residual behaviour of the mixture at the reduced mixture 
variables. The first part of Eq. (7.3) is the contribution of the reduced residual Helmholtz free 
energy of the pure substance equations of state linearly combined using the mole fractions xi .
The double summation in Eq. (7.3) is the departure function r ( , , )x  [see Eqs. (5.7) and 
(5.22)], which is the summation over all binary specific and generalised departure functions 

ij xr ( , , ) developed for the respective binary mixtures [see Eq. (5.23)].  

In Eq. (7.2) the dimensionless form of the Helmholtz free energy in the ideal-gas state of 
component i is given by
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where c,i  and T ic,  are the critical parameters of the pure components (see Table A3.5) and  

R = 8.314 472 J mol 1 K 1 (7.6) 

is the current, internationally accepted standard for the molar gas constant [Mohr and Taylor 
(2005)]. As described in Sec. 4.3, the equations for o

o
i  result from the integration of the cp

o

equations of Jaeschke and Schley (1995) [see Eqs. (4.13) – (4.15)], who used a different 

7.1   Numerical Description of the New Equation of State for ... Mixtures 
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molar gas constant than the one used in the developed mixture model. The ratio R R with 
R  8.314 510 J mol 1 K 1 takes into account this difference and therefore leads to the 
exact solution of the original cp

o  equations. The values of the coefficients n i ko
o

,  and the 
parameters o

o
i k,  of Eq. (7.5) for all considered 18 components are listed in Table A3.1 of the 

appendix.

The residual part of the reduced Helmholtz free energy of component i [see Eq. (7.3)] of the 
pure substance equations of state listed in Table 4.2 is given by

o
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Thus, the equations for o
r
i  use the same basic structure as already mentioned in Sec. 4.7. The 

respective values for the coefficients n i ko ,  and the exponents d i ko , , t i ko , , and c i ko ,  for all 
considered components are given in Tables A3.2 – A3.448.

The function ij
r ( , ) of Eq. (7.3), which is the part of the departure function ij xr ( , , ) 

that depends only on the reduced mixture variables  and  [see Eq. (5.23)], is given by
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where ij
r ( , ) was developed for either a specific binary mixture (a binary specific departure 

function with binary specific coefficients and parameters) or a group of binary mixtures 
(generalised departure function with a uniform structure for the group of binary mixtures). For 
a binary specific departure function the adjustable factor Fij  in Eq. (7.3) is set to unity. The 
parameter is fitted to binary specific data for each mixture in the group of generalised binary 
mixtures (see Sec. 5.3.3). Fij  equals zero for those binary mixtures where no departure 
functions were developed. The non-zero Fij  parameters are listed in Table A3.6. The values 
for the coefficients nij k,  and the exponents dij k, , tij k, , ij k, , ij k, , ij k, , and ij k,  for all binary 
specific and generalised departure functions considered in the new mixture model are given in 
Table A3.7.

The reduced mixture variables  and  are calculated from Eq. (7.4) by means of the 
composition-dependent reducing functions for the mixture density 
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and the mixture temperature 

                                                
48  For the simultaneously optimised equations of state of Span and Wagner (2003b) and Span (2000a) 

the old molar gas constant was substituted with the recent one without conversion. This has nearly 
no effect on the quality of the equations of state. 
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Equations (7.9) and (7.10) are the simplified formulations of Eqs (5.10) and (5.11) enabling 
computing-time saving algorithms by using the relations regarding the numbering of mole 
fractions [Eq. (5.13)]. The binary parameters v ij,  and v ij,  in Eq. (7.9) and T ij,  and T ij,  in 
Eq. (7.10) are fitted to data for binary mixtures. The values of the binary parameters for all 
binary mixtures are listed in Table A3.8 of the appendix. The critical parameters c,i  and T ic,

of the pure components are given in Table A3.5. 

7.2 Derivatives of , r, and Tr, and their Relations for the 
Calculation of Thermodynamic Properties 

As mentioned in Sec. 5.4, all thermodynamic properties of a mixture can be derived from 
Eq. (7.1) by using the appropriate combinations of the ideal-gas mixture part o( , , )T x  [Eq. 
(7.2)] and the residual part r ( , , )x  [Eq. (7.3)] of the dimensionless Helmholtz free energy 
and their respective derivatives. The thermodynamic properties in the homogeneous gas, 
liquid, and supercritical regions and for the vapour-liquid equilibrium of a mixture are related 
to derivatives of  with respect to the reduced mixture variables  and , and the mole 
fractions xi . Relations between thermodynamic properties and o, r , and their derivatives 
for common thermodynamic properties are summarized in Table 7.1. A comprehensive list of 
pressure, density, total volume, and temperature derivatives also required for phase 
equilibrium calculations (see Sec. 7.3) and their relations to r  is given in Table 7.2. The 
relations between  and the chemical potential i , the fugacity coefficient i , and the 
fugacity fi  of component i are presented in Table 7.3. The calculation of these properties 
requires the determination of composition derivatives of o and r  as described in Sec. 5.4.1. 
Table 7.4 lists the first partial derivatives of o, r , and r  with respect to the mole numbers 
ni . The second derivatives with respect to ni  and further relations required for the phase 
equilibrium algorithms developed in this work are derived in Sec. 7.3.

Since the multi-fluid mixture model is composed of several different correlation equations to 
take into account the real behaviour of mixtures (see Sec. 7.1), the evaluation of the 
derivatives of Eq. (7.1) with respect to the reduced mixture variables  and  is much more 
complex than the one of the derivatives of the reduced Helmholtz free energy of a pure 
substance [see Eq. (4.2)]. For instance, the derivative of o [Eq. (7.2)] as a function of , T,
and x  with respect to  is given by 
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Thus, the derivative of o with respect to  requires the evaluation of the derivatives of the 
equations for o

o
i  with respect to T Tic, , which is the ratio of the critical temperature of 

component i and the mixture temperature49. For the derivative of r  [Eq. (7.3)] as a function 
of , , and x  with respect to, for example, , the derivatives of the equations for o

r
i  and ij

r

have to be determined: 
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The calculation of, for example, chemical potentials, fugacity coefficients, fugacities, and 
derivatives of pressure with respect to ni  or xi  for phase equilibrium calculations requires the 
determination of composition derivatives of the residual part of the Helmholtz free energy as 
described in Sec. 5.4.1 (see also Sec. 7.3 for further details regarding first and second 
derivatives of r  with respect to ni ). For example, the derivative of Eq. (7.3) with respect to 
the mole fraction xi  of component i is given by 
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A complete list of all fundamental derivatives of Eqs. (7.2) and (7.3) with respect to ,  , and 
xi  required for standard and advanced property calculations (see Tables 7.1 – 7.4) is presented 
in Table 7.5. The respective derivatives of o

o
i , o

r
i , and ij

r  [see Eqs. (7.5), (7.7), and (7.8)] 
are explicitly listed in Tables 7.6 – 7.9.  

Aside from the basic derivatives of o with respect to  and , and r  with respect to , , and 
xi  (see Table 7.5), derivatives of the composition-dependent reducing functions for the 
mixture density and temperature [Eqs. (7.9) and (7.10)] have to be taken into account for the 
determination of the first and second derivatives of r  with respect to the mole numbers ni .
Such derivatives are required, for example, either for the calculation of the chemical potential 

i  of component i, the fugacity coefficient i  of component i, or the derivatives of pressure 
with respect to ni . The derived first and second derivatives of 1 r ( )x  and T xr ( )  [see 
Eqs. (7.9) and (7.10)] are explicitly listed in Table 7.10. 

The formalism where the properties and its derivatives are calculated by combining partial 
derivatives of the Helmholtz free energy of the mixture ensures a consistent set of relations as 
shown in Tables 7.1 – 7.10 and leads to an efficient computer code. In Sec. 7.3.1 tests for the 
verification of the calculated fugacity coefficients and their partial derivatives are shown to be 
straightforward.

49  Basically, the evaluation of the derivatives of o  with respect to the reduced mixture variables 
and  can be reduced to derivatives with respect to mixture density and temperature as shown for 
the temperature derivative in Eq. (5.31). The derivatives of o  with respect to / ,c i  and T Tic, /
leads to the same results but is more convenient to perform due to the structure of the o

o
i  equations 

[see Eq. (7.5)]. 
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Table 7.1 Definitions of common thermodynamic properties and their relation to the reduced 
Helmholtz free energy , Eq. (7.1) 

Property and definition Relation to  and its derivativesa,b

Pressure
p T x a v T x( , , ) ,

p x
RT

( , , )
1 r

Compression factor
Z T x p RT( , , ) Z x( , , ) 1 r

Entropy
s T x a T v x( , , ) ,

s x
R

( , , ) o r o rc h
Internal energy
u T x a Ts( , , )

u x
RT

( , , ) o rc h
Isochoric heat capacity
c T x u Tv v x( , , ) ,

c x
R

v ( , , ) 2 o rc h
Enthalpy
h T p x u pv( , , )

h x
RT

( , , )
1 o r rc h

Isobaric heat capacity
c T p x h Tp p x( , , ) ,

c x

R
p( , , ) 2

2

2

1

1 2
o r

r r

r rc h c h

Gibbs free energy
g T p x h Ts( , , )

g x
RT

( , , )
1 o r r

Speed of sound
w T p x M p s x( , , ) ,1

w x M
RT

2
2

2

21 2
1( , , ) r r

r r

o r

c h
c h

Joule - Thomson coefficient
JT( , , ) ,T p x T p h x

JT

r r r

r r o r r r
R

2

2 2 21 1 2

c h
c h c h c h

Isothermal throttling coefficient
T T xT p x h p( , , ) , T 1

1
1 2 2

r r

r r

Isentropic exponent
( , , ) ,T p x v p p v s x
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1 2
1
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1

1 2

2 2

2 2

r r

r

r r

o r r r

c h
c h c h

Second thermal virial coefficient
B T x Z T x( , ) lim ,0

B( ) limr
r

0

Third thermal virial coefficient

C T x Z
T x

( , ) lim
,

1
2 0

2 2c h C( ) limr
r2

0

Second acoustic virial coefficientc

a
o( , ) lim

,
T x w RT

T x0

2 c hc hd i a r
r

o

o
r

o

o
r( ) lim
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N
MM

O

Q
PP0

2
22 2

1 1c h

a See Eq. (7.4) for the definition of  and , and Eq. (7.9) for r .
b See Table 7.5 for the derivatives of o and r  with respect to  and .
c o o oc cp v/  is the isentropic exponent of the ideal-gas mixture. 

7.2   Derivatives of , r, and Tr, and their Relations for the Calculation of... 
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Table 7.2 Derivatives of pressure, density, total volume, and temperature, and their relation to the 
reduced Helmholtz free energy , Eq. (7.1) 

Pressure derivative Relation to  and its derivativesa,b
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I
KJ

L

N
MM

O

Q
PP

, , , ,

1 2
1r

r

r
r

Relations resulting from pressure derivatives 

Derivative of V with respect to T and vice versa Derivative of  with respect to T and vice versa 

1 1
n

V
T

p
T

n
p
V

n
T
V

p n

V n

T n p n

FH IK
FH IK
FH IK FH IK,

,

, ,

T

p
T

p Tp x

x

T x p x

FH IK
FH IK
F
HG
I
KJ

F
HG
I
KJ

,

,

, ,

1

Derivative of V with respect to ni  Derivative of T with respect to ni

V
n

v

p
n

p
V

i T p n
i

i T V n

T n
j

jF
HG
I
KJ

F
HG
I
KJ
FH IK, ,

, ,

,

n
T
n

n
p
n

p
T

i p V n

i T V n

V n
j

jF
HG
I
KJ

F
HG
I
KJ

FH IK, ,

, ,

,

a See Eq. (7.4) for the definition of  and , and Eq. (7.9) for r .
b See Table 7.5 for the derivatives of o and r  with respect to  and .
c See Table 7.4 and Sec. 7.3 for the derivatives of r  and r  with respect to ni .
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Table 7.3 Definitions of the chemical potential, the fugacity coefficient, and the fugacity of 
component i, and their relation to the reduced Helmholtz free energy , Eq. (7.1) 

Property and definition Relation to  and its derivativesa

Chemical potential of component i

T V n
A
ni

i T V n j

( , , )
, ,

F
HG
I
KJ

i

i T V n i T V n
RT

n
n

n
n

j j

F
HG
I
KJ

F
HG
I
KJ

o r

, , , ,

Fugacity coefficient of component

d

i

T p n
v
RT p

pi
i

T n

p

ln ( , , ) ,
F
HG

I
KJz 1

0

ln ln
, ,

i
i T V n

n
n

j

F
HG
I
KJ

r
r1c h

Fugacity of component i
f T p n x p T p ni i i( , , ) ( , , )

f x RT
n
ni i

i T V n j

F
HG
I
KJexp

, ,

r

a See Table 7.4 for the derivatives of n o  and n r  with respect to ni  and Table 7.5 for the derivative 
of r  with respect to , i.e. r ; see Eq. (7.4) for the definition of .

Table 7.4 First derivatives of the Helmholtz free energy  and the reducing functions for mixture 
density r  and temperature Tr  with respect to the mole numbers ni

a

Derivatives of n o  and n r  with respect to the mole number ni  of component i b

n
n

T x
i T V n

i i

j

o

o
oF

HG
I
KJ , ,

( , ) ln1 (7.14)

n
n

n
ni T V n i T V nj j

r
r

rF
HG
I
KJ

F
HG
I
KJ, , , ,

(7.15)

Derivatives of r  and r  with respect to the mole number ni  of component i c

n
n

n
n T

n
T
n

x
i T V n i n i n

x k x
k

N

j j j
i k

r
r

r

r r

r

r r rF
HG
I
KJ

F
HG
I
KJ

L

N
MM

O

Q
PP

F
HG
I
KJ

, ,

1
1 1

1
(7.16)

n
n

n
n T

n
T
n

x
i T V n i n i n

x k x
k

N

j j j
i k

r
r

r

r r

r

r r rF
HG
I
KJ

F
HG
I
KJ

L

N
MM

O

Q
PP

F
HG
I
KJ

, ,

1
1 1

1
(7.17)

Derivatives of r r ( )x  and T T xr r ( )  with respect to the mole number ni  of component i d

n
n x

x
xi n i x

k
k xk

N

j j j

r r rF
HG
I
KJ
F
HG
I
KJ

F
HG
I
KJ

1

, with r
r

r

x xi x i xj j

F
HG
I
KJ

F
HG

I
KJ

2 1
(7.18)

n
T
n

T
x

x
T
xi n i x

k
k xk

N

j j j

r r rF
HG
I
KJ
F
HG
I
KJ

F
HG
I
KJ

1
(7.19)

a See Sec. 7.3 for further and second derivatives of , r , and Tr  with respect to ni .
b See Eq. (7.5) for o

o
i  and Eq. (7.3) for r .

c See Table 7.5 for the derivatives of r  with respect to  and , Eq. (7.4). 
d See Table 7.10 for the derivatives of 1 / ( )r x  and T xr ( ), Eqs. (7.9) and (7.10), with respect to xi .
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Table 7.5 The parts o( , , )T x  and r ( , , )x  of the dimensionless Helmholtz free energy  and 
their derivatives with respect to the reduced mixture variables  and , and the mole 
fractions xi

a

First and second derivatives of o with respect to  and b,c

o o
o
o( , , ) ( , ) lnT x x T xi i i

i

N

1
(7.20a)

o
o r

c

o
o

c

F
HG
I
KJ

F
HG

I
KJ, , ,x

i
i

i

i Ti

N

x b g1
(7.20b)

2

2

2 2

2
1

o
o r

c

o
o

c

F
HG
I
KJ

F
HG
I
KJ
F
H
GG

I
K
JJ

, , ,x
i

i

i

i Ti

N

x
b g (7.20c)

2 2

1

o
o r

c

c

r

o
o

c c

F
HG
I
KJ

F
HG

I
KJx

i
i

i i

i ii

N

x
T
T T T,

,

, ,b g b g (7.20d)

o
o c

r

o
o

c

F
HG
I
KJ

F
HG

I
KJ,

,

,x
i

i i

ii

N

x
T
T T Tb g1

(7.20e)

2

2

2 2

2
1

o
o c

r

o
o

c

F
HG
I
KJ

F
HG
I
KJ
F
H
GG

I
K
JJ

,

,

,x
i

i i

ii

N

x
T
T T Tb g (7.20f)

First and second derivatives of r  with respect to , , and xi
d

r r
o
r r( , , ) ( , ) ( , )x x x x Fi i

i

N

i j ij ij
j i

N

i

N

1 11

1

(7.21a)

r
r o

r rF
HG
I
KJ

F
HG
I
KJ

F
HG
I
KJ,x

i
i

i

N

i j ij
ij

j i

N

i

N

x x x F
1 11

1

(7.21b)

2

2

2

2
1

2

2
11

1r
r o

r rF
HG
I
KJ

F
HG
I
KJ

F
HG
I
KJ,x

i
i

i

N

i j ij
ij

j i

N

i

N

x x x F (7.21c)

2 2

1

2

11

1r
r o

r rF
HG
I
KJ

F
HG
I
KJ

F
HG
I
KJx

i
i

i

N

i j ij
ij

j i

N

i

N

x x x F (7.21d)

r
r o

r rF
HG
I
KJ

F
HG
I
KJ

F
HG
I
KJ,x

i
i

i

N

i j ij
ij

j i

N

i

N

x x x F
1 11

1

(7.21e)

2

2

2

2
1

2

2
11

1r
r o

r rF
HG
I
KJ

F
HG
I
KJ

F
HG
I
KJ,x

i
i

i

N

i j ij
ij

j i

N

i

N

x x x F (7.21f)
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Table 7.5 (continued)

First and second derivatives of r  with respect to , , and xi
d (continued) 

r
r

o
r r

x
x F

i x
x i k ik ik

k
k i

N

j
i

F
HG
I
KJ , , 1

(7.21g)

2

2 0
r

r

xi x
x x

j
i i

F
HG
I
KJ , ,

(7.21h)

2 r
r r

x x
F

i j
x x ij iji j

F
HG
I
KJ ,

( , ) ,   i j (7.21i)

2

1

r
r o

r r

x
x F

i x
x

i
k ik

ik

k
k i

N

j
i

F
HG
I
KJ

F
HG
I
KJ

F
HG
I
KJ,

(7.21j)

2

1

r
r o

r r

x
x F

i x
x

i
k ik

ik

k
k i

N

j
i

F
HG
I
KJ

F
HG
I
KJ

F
HG
I
KJ,

(7.21k)

Third derivatives of r  with respect to  and e

3

3

3

3
1

3

3
11

1r
r o

r rF
HG
I
KJ

F
HG
I
KJ

F
HG
I
KJ,x

i
i

i

N

i j ij
ij

j i

N

i

N

x x x F (7.21l)

3 3

1

3

11

1

2 2 2

r
r o

r rF
HG
I
KJ

F
HG
I
KJ

F
HG
I
KJx

i
i

i

N

i j ij
ij

j i

N

i

N

x x x F (7.21m)

a See Eq. (7.4) for the definition of  and .
b See Table 7.6 for the equation of o

o
i  and its derivatives with respect to / ,c i  and T Tic, / . 

c See Eqs. (7.9) and (7.10) for the reducing functions r r ( )x  and T T xr r ( ) ; c,i  and T ic,  are the 
critical parameters of component i.

d See Tables 7.7 and 7.8 for the equations of o
r
i  and ij

r  and their derivatives with respect to  and .
e See Table 7.9 for the third derivatives of o

r
i  and ij

r  with respect to  and .
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Table 7.10 The reducing functions for mixture density 1 / ( )r x  and temperature T xr ( ) and their 
derivatives with respect to the mole fractions xi

Reducing function for density 1 / r  (Y v) and temperature Tr  (Y T )a

Y Y x x x
x x

x x
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Y ji Y ij, ,  and Y ji Y ij, ,/1  for the symmetric numbering of mole fractions. 
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7.3 Determination of Derivatives from Multi-Fluid Mixture Models 
Required for Phase Equilibrium and Other Property 
Calculations 

The algorithms for carrying out phase equilibrium calculations used in this work are based on 
procedures using several kinds of partial derivatives to solve the set of equations for the 
equilibrium and secondary conditions for the unknown variables (see Secs. 5.4.1 and 7.6), to 
perform Gibbs free energy minimisation using a second order method (see Sec. 7.6.1), and to 
also verify the stability of the solution by means of minimising the tangent plane distance 
using a second order minimisation approach (see Secs. 7.5.1 and 7.6.2). All the required 
derivatives were determined analytically in order to develop robust and efficient property 
calculation routines. The results are described in the following paragraphs. Even the very 
sophisticated composition derivatives are formulated in a general manner which enables the 
use of the derived formulations for any multi-fluid approximation based on a similar structure 
as the new mixture model presented here.  

The basis for the stability analysis as well as for flash and phase envelope calculations using 
temperature and pressure as the independent variables (see Secs. 7.5.1, 7.6, and 7.7.1) is the 
fugacity coefficient i  of component i which is defined as follows: 

RT T p n v RT
p

p p
n

RT
V

V RT Zi i T n

p

i T V n
T n

V

j

ln ( , , ) ln,
, ,

,
F
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I
KJ

F
HG
I
KJ

F
H
GG

I
K
JJz zd d

0

. (7.23) 

Equation (7.23) can be used to determine the fugacity coefficients from equations of state for 
mixtures explicit in volume V T p n( , , ) or pressure p T V n( , , ). Changing the order of 
integration and of differentiation in Eq. (7.23) leads to the equivalent, but much more 
convenient expression 

RT T p n G T p n
n

A T V n
n

RT Zi
i T p n i T V nj j

ln ( , , ) ( , , ) ( , , ) ln
, , , ,

F
HG

I
KJ

F
HG

I
KJ

r r
, (7.24) 

which can be used for the calculation of fugacity coefficients from equations of state explicit 
in the Gibbs free energy G T p n( , , )  or the Helmholtz free energy A T V n( , , ). By inserting the 
relation  

A T V n
RT

n
r

r( , , )  (7.25) 

in Eq. (7.24), where r r ( , , )x  is the residual part of the reduced Helmholtz free energy 
[see Eqs. (5.7) and (7.3)] and n is the total mole number according to  

n ni
i

N

1
, (7.26) 

7.3   Determination of Derivatives from Multi-Fluid Mixture Models... 



118 7   The New Equation of State (GERG-2004)

the connection between the logarithm of the fugacity coefficient of component i in the 
mixture and the multi-fluid approximation is obtained as follows: 

ln ln
, ,

i
i T V n

n
n

Z
j

F
HG
I
KJ

r
, (7.27) 

where the compression factor is 

Z pV
nRT

1 r . (7.28) 

By applying basic mathematical relations among partial derivatives, the required derivatives 
of ln i [see Eq. (7.27)] with respect to temperature T (at constant pressure and composition), 
pressure p (at constant temperature and composition), and mole numbers nj  (at constant 
temperature and pressure, and constant moles of other components nk  with k j , which is 
implicitly assumed throughout this chapter to take advantage of a simpler notation for such 
composition derivatives) can be written according to the following equations [see Michelsen 
and Mollerup (1986) and Mollerup and Michelsen (1992) for the corresponding relations 
when using other models]: 
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where the partial molar volume vi is given by

, ,

, ,

,

v V
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i
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T n
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KJ
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. (7.32) 

Aside from the traditional approach using temperature and pressure as the independent 
variables, an alternative phase envelope algorithm which uses temperature and total volume 
as the independent variables was used (see Sec. 7.7.2). For this volume-based phase envelope 
algorithm, the ratio of the fugacity of component i and its mole number is used. Dividing the 
fugacity of component i according to  

f x RT n
ni i

i T V nj

F
HG
I
KJexp

, ,

r
 (7.33) 
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by the mole number ni  of component i, and performing several further conversions leads to: 

ln ln
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i

i i T V nj

F
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F
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F
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r
, (7.34) 

where the total volume  

V nv n . (7.35) 

From Eq. (7.34) the required derivatives with respect to temperature T (at constant total 
volume and composition), total volume V (at constant temperature and composition), and 
mole numbers nj  (at constant temperature, total volume, and moles of other components) are 
obtained as follows: 
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. (7.38) 

In the resulting expressions for the scaled composition derivatives of ln i in terms of the 
reduced Helmholtz free energy as a function of the mixture variables  and  and the mole 
fractions xi , the total number of moles n cancels out of the equations. Thus, the scaled 
derivatives only depend on the mixture composition, not on the total number of moles. Note 
that Eq. (7.38) is not scaled and therefore the mole number n is required for the calculation of 
these derivatives as well as for the equations where the total volume [Eq. (7.35)] is involved 
[see Eqs. (7.34) and (7.37)]. Since this is internally controlled in the algorithm, only the 
scaled derivatives will be derived in the following paragraphs.  

Aside from the first derivative of n r  with respect to ni  required to calculate ln i and 
ln f ni ia f [see Eqs. (7.27) and (7.34)], the determination of pressure derivatives with respect to 
temperature, total volume, and mole numbers, and of the following second derivatives of n r

are required to determine the derivatives of ln i and ln f ni ia f listed above:
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With the derivative of n r  with respect to ni  at constant temperature T, total volume V, and 
other mole numbers nj  with j i  [see Eq. (5.44)] according to

n
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ni T V n i T V nj j

r
r
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F
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I
KJ, , , ,

, (7.42) 

where the derivative of r  with respect to ni  at constant T, V, and other mole numbers nj  [see 
Eqs. (5.45) and (5.50)] can be expressed as
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for the second derivatives according to Eqs. (7.39) – (7.41) the following results are obtained: 
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The second part of the sum in Eq. (7.46) results in

n
n

n
nj i T V n

T V nj
i

rF
HG
I
KJ

F
H
GG

I
K
JJ

F

H
GG

I

K
JJ, ,

, ,

n
n

n
ni T V n

x
j T V nj i

rF
HG
I
KJ

F

H
GG

I

K
JJ

F

H
GG

I

K
JJ
F
HG
I
KJ, ,

,
, ,

n
n

n
ni T V n

x
j T V nj i

rF
HG
I
KJ

F

H
GG

I

K
JJ

F

H
GG

I

K
JJ
F
HG
I
KJ, ,

,
, ,

x
n

n
x

x
n

nj i T V n
x

k
k i T V n

x
k

N

j
i

j
i

r rF
HG
I
KJ

F

H
GG

I

K
JJ

F

H
GG

I

K
JJ

F
HG
I
KJ

F

H
GG

I

K
JJ

F

H
GG

I

K
JJ, ,

, ,
, ,

, ,
1

, (7.47) 
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and the derivatives of the mixture variables  and  with respect to the mole numbers nj  at 
constant T, V, and other mole numbers ni  [see Eqs. (5.47) and (5.48)] are obtained according 
to

n
n

n
nj T V n j ni i
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KJ, , r

r , (7.48) 
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I
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r . (7.49) 

Equation (7.47) is valid for all i and j; the distinction between i j  and i j  is necessary 
only for the second derivatives with respect to mole fractions of the fundamental elements of 
the mixture model, namely r  and the reducing functions r  and Tr  [see Eqs. (7.21h) and 
(7.21i) in Table 7.5, and Eqs. (7.22c) and (7.22d) in Table 7.10].

Equations (7.44), (7.45), and (7.47) require the partial derivatives of Eq. (7.43) with respect to 
, , and x j . Setting up the derivatives of Eq. (7.43) with respect to  and  is comparatively 

simple as these are taken at constant composition x :
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The derivative of Eq. (7.43) with respect to x j  at constant , , and other mole fractions xi  can 
be determined in the following manner:  
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Note that Eq. (7.47) requires the summation over all composition derivatives of Eq. (7.43), 
and according to Eq. (7.52) each of the elements of this summation again require the 
summation over all second composition derivatives of r .

The first derivatives of the reducing functions for the mixture density r r ( )x  and mixture 
temperature T T xr r ( )  with respect to ni  with the other mole numbers nj  kept constant, 
which are required for Eqs. (7.43) and (7.48) – (7.52), result in: 

n
n x

x
xi n i x

k
k xk

N

j j j

r r rF
HG
I
KJ
F
HG
I
KJ

F
HG
I
KJ1

, (7.53) 

n T
n

T
x

x T
xi n i x

k
k xk

N

j j j

r r rF
HG
I
KJ
F
HG
I
KJ

F
HG
I
KJ1

. (7.54) 

The second derivatives of the reducing functions with respect to composition, which are also 
needed for Eq. (7.52), are given by the expressions below:
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As the reduced density is explicit in 1 r , the following relations have to be applied for the 
derivatives of r  [see also Eq. (7.9) and Table 7.10]: 
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The determination of the pressure derivatives required in Eqs. (7.29), (7.31), and (7.32) 
follows from the relation between pressure and the reduced residual Helmholtz free energy 
[Eq. (7.3)] according to  

p x RT( , , ) 1 rc h . (7.60) 

Forming the partial derivatives of Eq. (7.60) with respect to T, V, and ni  with the respective 
properties kept constant, the required pressure derivatives can be written as follows: 
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In Eq. (7.63) the derivative of r  with respect to ni  is required as a further derivative. Similar 
to the derivation of Eq. (5.50), the derivative of r  with respect to ni  at constant T, V, and 
other mole numbers nj  results in: 

n
n

n
n T

n T
n

x
i T V n i n i n

x k x
k

N

j j j
i k

r
r

r

r r

r

r r rF
HG
I
KJ

F
HG
I
KJ

L

N
MM

O

Q
PP

F
HG
I
KJ, ,

1 1 1

1
. (7.64) 

Similar to Eq. (7.64), the derivative of r  with respect to ni  at constant T, V, and other mole 
numbers nj  results in 
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It is important to note that Eqs. (7.64) and (7.65) do not equal Eqs. (7.50) and (7.51) since the 
order of differentiation is not immaterial due to the different variables kept constant for their 
determination.  

Additionally, derivatives of ln i with respect to or at constant total volume can easily be 
derived and are directly related to Eqs. (7.29) – (7.31) and the pressure and temperature 
derivatives listed in Table 7.2. By applying the relations of the fugacity and chemical 
potential derivatives listed in Table 7.11, the derivatives of the fugacity fi  of component i
[see Eqs. (7.33) and (5.42)] and the chemical potential i  of component i [see Eq. (5.35)] 
with respect to temperature, pressure, and mole numbers can be calculated from the 
previously derived relations (see Table 7.3 and Sec. 5.4.1 for the definition of i). For 
example, for the derivative of i  with respect to T at constant pressure and composition, the 
following equation is obtained: 

7.3   Determination of Derivatives from Multi-Fluid Mixture Models... 
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see Table 7.2 for the derivative of the total volume V with respect to T which is additionally 
required in Eq. (7.66). By substituting the relations for i

o and i
r  [see Eq. (5.36)] in 

Eqs. (7.67) and (7.68) given by
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the derivatives according to Eqs. (7.44) and (7.45) are required, whereas the derivatives of i
o

follow from Eq. (5.37) by differentiating o
o
i  with respect to T and V. Note that instead of the 

derivative of i  with respect to V at constant T and n , the negative of the derivative of 
pressure with respect to ni  at constant temperature, total volume, and other mole numbers nj

according to Eq. (7.63) can be used. This relation also enables the verification of the second 
derivative of n r  according to Eq. (7.45) in addition to the relations for the respective 
straightforward verification of the different derivatives of ln i (and also of i) with respect 
to temperature, pressure, and composition, as described in the following section. 

Thus, virtually all derivatives required for phase equilibrium and other property calculations 
have been determined. The derived equations are valid for any multi-fluid mixture model 
explicit in the reduced Helmholtz free energy  based on the structure presented in Chap. 5, 
and using composition-dependent reducing functions for the mixture density and temperature. 
The derivatives were successfully tested with other models, e.g. those of Lemmon et al.
[Lemmon and Jacobsen (1999), Lemmon et al. (2000)]. 

The use of composition derivatives of the logarithm of fugacity coefficients as derivatives 
with respect to total moles (scaled or not scaled by the total number of moles) according to 
Eq. (7.31) instead of mole fraction derivatives is recommended for multi-component property 
calculations. For instance, it is very unlikely that differentiation of a fugacity coefficient 
expression with respect to mole fractions will yield a symmetric matrix as it does for the 
derivatives with respect to total moles. This is advantageous since the computational effort is 
reduced by a factor of about two. Although scaled derivatives with respect to total moles only 
depend on the mixture composition (not on the total number of moles), the scaled 
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composition derivatives should not be confused with mole fraction derivatives, but can be 
used instead of mole fraction derivatives in iterative procedures. 

Table 7.11 Derivatives of the fugacity and the chemical potential of component i with respect to 
temperature, pressure, and mole numbers, and their relation to other properties 

Derivatives of the fugacitya Derivatives of the chemical potentialb
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a See also Eqs. (7.31), (7.32), and (7.78). 
b See also Eqs. (7.32) and (7.66). 

7.3.1 Test of Calculated Fugacity Coefficients, Chemical Potentials, and 
their Partial Derivatives 

For the successful development of property calculation algorithms, the correctness of the 
derivatives determined in the preceeding section is extremely important. Unfortunately, even 
a systematic approach does not prevent coding errors, and it is necessary that computer codes 
are tested for internal consistency. To verify the correctness of the various derivatives, the 
identities listed below are very useful.  

The analytical derivatives can always be tested by numerical evaluation of the respective 
derivatives, preferably carried out by means of central differences, i.e. 

f
n

f n n n n f n n n n
i

i N i N( , , , , , ) ( , , , , , )1 2 1 2
2

. (7.70) 

For composition derivatives,  should be chosen as about 10 5 times the sum of moles, which 
should yield results accurate to 8 – 10 digits [see Mollerup and Michelsen (1992)]. 

Aside from comparisons with numerical derivatives, a straightforward procedure for checking 
the fugacity coefficients and their derivatives was used in this work. For that reason, the 
following identities, which are obtained from standard thermodynamic relations, have to be 
satisfied: 

n G T p n
RT

ni i
i

N
ln ( , , ) ln

1
1

r
r r rc h , (7.71) 
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For constant temperature and pressure, Eq. (7.74) follows from the Gibbs-Duhem equation: 
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N
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Equation (7.71) results from the relation between the partial molar residual Gibbs free energy 
( , , )g T p ni

r  and the logarithm of the fugacity coefficient of component i [see Eq. (7.27)] which 
equals

( , , ) lng T p n
RT

i
i

r
, (7.77) 

and Eq. (7.72) from the relation between the partial molar residual enthalpy ( , , )h T p ni
r  and 

the derivative of ln i with respect to T [see Eq. (7.29)] according to  
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To verify the fugacity coefficients and their temperature derivatives, access to the residual 
Gibbs free energy G T p nr ( , , )  and to the residual enthalpy H T p nr ( , , )  is needed as evident 
from Eqs. (7.71) and (7.72). Further residual properties and their relation to the reduced 
residual Helmholtz free energy r  of a multi-fluid mixture model are given in Table 7.12.  

In a similar manner, the chemical potentials i  and their derivatives with respect to 
temperature, pressure, and composition can be tested for correctness by applying standard 
thermodynamic relations among partial molar properties, and the Gibbs-Duhem equation 
[Eq. (7.76)]. In terms of the reduced Helmholtz free energy  [Eq. (7.1)], the following 
identities are obtained (see also Table 7.1): 
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The composition derivatives of i  are directly related to the respective composition 
derivatives of ln fi  and ln i as shown in Table 7.11. 

Table 7.12 Definitions of residual thermodynamic properties and their relation to the reduced 
residual Helmholtz free energy r , Eq. (7.3) 

Residual property and definition Relation to r  and its derivativesa,b

Residual Helmholtz free energy
r rA T p n A T V n nRT Z( , , ) ( , , ) ln

a x
RT

r
r r( , , )

ln 1c h
Residual entropy

r rS T p n S T V n nR Z( , , ) ( , , ) ln
s x

R

r
r r r( , , )

ln 1c h
Residual internal energy

r rU T p n U T V n( , , ) ( , , )
u x

RT

r
r( , , )

Residual enthalpy
r rH T p n H T V n( , , ) ( , , )

h x
RT

r
r r( , , )

Residual Gibbs free energy
r rG T p n G T V n nRT Z( , , ) ( , , ) ln

g x
RT

r
r r r( , , )

ln 1c h
Relations between Ar , Sr , U r , H r , and Gr

U T V n A T V n TS T V nr r r( , , ) ( , , ) ( , , )

H T V n U T V n pV nRTr r( , , ) ( , , )

G T V n A T V n pV nRTr r( , , ) ( , , )

a See Eq. (7.4) for the definition of  and .
b See Table 7.5 for the derivatives of r  with respect to  and .

7.4 Relations Between Activity Coefficients, Excess Properties,  
and

Since multi-fluid mixture models are able to accurately describe the properties of mixtures in 
the liquid phase, activity coefficient and excess Gibbs free energy models are no longer 
needed for those mixtures where such an approach is available (see Table 5.1). Several 
drawbacks are associated with the use of activity coefficient and excess Gibbs free energy 

7.3   Determination of Derivatives from Multi-Fluid Mixture Models... 
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models. For example, in equilibrium calculations the liquid phase is often described by an 
activity coefficient or excess Gibbs free energy model and the vapour phase by an equation of 
state, e.g. a cubic equation of state, which is in general not able to accurately describe the 
liquid phase (see Sec. 2.1.2). This will never lead to a closed phase boundary or a vapour-
liquid critical point as the combination of these models is inconsistent. Since a multi-fluid 
mixture model is able to accurately describe both phases with a single approach, such models 
are far superior as they yield accurate and consistent results for the extended fluid surface 
including the vapour-liquid equilibrium. Nevertheless, the activity ai  and the activity 
coefficient i  of component i can be calculated from a mixture model based on a multi-fluid 
approximation explicit in the reduced Helmholtz free energy  by the following expressions: 
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where f f T pi io o ( , )  and o oi i T p( , ) are the fugacity and the fugacity coefficient of the 
respective pure component; see Eq. (7.42) for the derivative of n r  with respect to ni .

The connection between excess Gibbs free energy models and multi-fluid mixture models 
explicit in the reduced Helmholtz free energy  is given by 
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where g T pio ( , )  is the molar Gibbs free energy of the respective pure component. 
Experimental mixture data for the molar excess enthalpy hE and the molar excess volume vE,
which are useful for the development of multi-fluid mixture models when no other 
experimental information is available, can be compared to calculated values from  according 
to
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where h T pio ( , ) and v T pio ( , ) are the molar enthalpy and molar volume of the respective pure 
component.  
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7.5 Phase Stability 

In the following train of thoughts a closed multi-component system is considered which is 
comprised of a single phase, e.g. a homogeneous vapour, liquid, or supercritical phase, 
initially having the Gibbs free energy G T p n( , , ) . The chemical potentials i  equal the partial 
derivatives of G with respect to the variables n . A new phase is formed by removing a 
differential amount of matter n  and with that changing the initial system50. Assuming that 
the changes in the independent variables of the initial phase are so small that the chemical 
potentials i  of the initial system remain unchanged, the change in the Gibbs free energy of 
the initial phase equals 

G ni i
i

N

1
 (7.89) 

and the Gibbs free energy of the new phase becomes 

G ni i
i

N

1
, (7.90) 

where the i  are the chemical potentials of the new phase. The initial phase will be stable 
(i.e. homogeneous in this example) if the formation of a new phase does not lead to a decrease 
in the Gibbs free energy of the whole system. This means that  

G G G ni i i
i

N

c h
1

0 (7.91) 

for any changes of the independent variables n . Aside from this stability criterion for the 
independent variables T, p, and n , similar criteria can be derived for other independent 
variables which must remain constant for the overall system. For instance, for T, V, and n  as 
the natural independent variables of the Helmholtz free energy A of a mixture, the following 
corresponding stability criteria is obtained: 

A p p V ni i i
i

N

c h c h
1

0. (7.92) 

The star denotes an intensive or extensive property of the segregated phase and  denotes the 
quantity of the extensive property transferred to the new phase.

Since the equality of component chemical potentials or fugacities in the fluid phases of a 
system comprised of any number of phases is only a necessary condition for equilibrium, the 
solution has to be verified for stability as well. At a given temperature, pressure, and 
composition of the overall system, the equilibrium mixture is stable if and only if the overall 
Gibbs free energy is at its global minimum. The same is true for the overall Helmholtz free 

                                                
50  In this context,  denotes a differential quantity and should not be confused with the reduced 

mixture density. 

7.5   Phase Stability 
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energy of an equilibrium system at a given temperature, overall total volume, and overall 
mixture composition. 

Thus, analysing the phase stability enables the development of property calculation 
algorithms which allow for “blind” calculations where the number of phases is not known in 
advance. If a phase turns out to be unstable, adding phases (or perhaps removing, if a two- or 
multi-phase equilibrium system turns out to be unstable) to obtain the global minimum of G
or A of the overall system leads to the correct results of the present property calculation to be 
solved. Most methods for phase stability determination are based on Gibbs free energy 
minimisation. The basic principle of the stability analysis algorithm used for the developed 
property calculation routines in this work is explained in the following section.

7.5.1 Stability Condition and Stability Analysis 

Considering the case of two-phase equilibrium, the change in Gibbs free energy resulting 
from transferring ni  moles of component i from the liquid phase to the vapour phase is  

G ni i ia f . (7.93) 

At the global minimum, G  must be zero for any transfer of material. Equation (7.93) then 
yields the condition of equality of chemical potentials or of fugacities as a necessary condition 
for phase equilibrium.  

For the following derivation of a necessary condition for phase stability, a phase with 
composition x  and with the chemical potentials ( )x  is considered. Assuming that an 
infinitesimal amount e  of a new phase with the molar composition w  is formed from this 
phase, the change in Gibbs free energy associated with the formation of the new phase is 
given by 

G e w w xi i i
i

N
( ) ( )

1
 (7.94) 

with w ei  the amount of component i transferred. A necessary condition for the stability of 
the original phase is that G  is nonnegative for any positive e . This results in

w w xi i i
i

N
( ) ( )

1
0 (7.95) 

for any composition w , which is the tangent plane condition of Gibbs.

A solution to the phase equilibrium equations has identical chemical potentials for each 
component in all phases (see Sec. 5.4.1). This implies that the vapour phase composition and 
the liquid phase composition have identical tangent planes. A stability analysis by means of 
the tangent plane distance [see Eqs. (7.96) and (7.99)] will thus yield identical results for both 
phases, or for all phases in case more than two equilibrium phases are present. It can easily be 
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shown that the tangent plane condition is not only a necessary condition, but even a sufficient 
condition for stability [see Michelsen and Mollerup (2004)].

According to Eq. (7.95), for a mixture of composition x  at specified temperature and 
pressure, the necessary and sufficient condition for stability is that the tangent plane distance 
function

TPD w w w xi i i
i

N
( ) ( ) ( )

1
 (7.96) 

is nonnegative for any trial phase composition w . Rewriting the condition in terms of fugacity 
coefficients [see Eq. (7.27)] is done by substituting

i i i iT p w T p RT w RT T p w( , , ) ( , ) ln ln ( , , )o
o  (7.97) 

and

i i i iT p x T p RT x RT T p x( , , ) ( , ) ln ln ( , , )o
o , (7.98) 

where o
o
i T p( , )  is the ideal chemical potential of the pure component i at a given temperature 

and pressure, into the reduced tangent plane distance from Eq. (7.96), resulting in

tpd w TPD w
RT

w w w x xi i i i i
i

N
( ) ( ) ln ln ( ) ln ln ( )

1
. (7.99) 

In order to verify stability, tpd w( ) must be nonnegative for all valid phase compositions.  

A graphical (geometric) interpretation of phase equilibrium and the described stability 
condition in terms of Gibbs free energy plots and tangent plane distances is given for binary 
mixtures, for example, by Baker et al. (1982), Michelsen (1982a), and Michelsen and 
Mollerup (2004). 

Verifying the tangent plane condition is not a trivial task since it requires a search over the 
entire composition range (of mixtures consisting of any number of components). When such 
an extensive “search” does not reveal violations, the tangent plane condition for stability is 
satisfied.  

The practical application of the tangent plane condition of Gibbs [Eq. (7.95)] was 
demonstrated in connection with phase equilibrium by Baker et al. (1982). A computational 
approach based on minimising the tangent plane distance was suggested by Michelsen 
(1982a,b) and included guidelines for its use in connection with multi-phase equilibrium 
calculations. This approach is based on the fact that the tangent plane condition is 
nonnegative everywhere if and only if it is nonnegative at all its minima. Thus, the task is to 

locate all (local) minima of the tangent plane distance and to 

check whether all their values of tpd are nonnegative. 

7.5   Phase Stability 
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If a negative value of tpd is encountered during the search for the local minima, the mixture is 
known to be unstable.

Several other methods for resolving the question of stability are reported in the literature. 
Developments of considerable interest are based on global optimisation methods [e.g. 
McDonald and Floudas (1995), (1997), Harding and Floudas (2000), Nichita et al. (2002a,b)], 
interval analysis [e.g. Hua et al. (1996), (1998)], and homotopy-continuation methods [e.g. 
Sun and Seider (1995)]. All of these algorithms are based on the Gibbs free energy 
minimisation.  

For certain specifications of practical importance, e.g. specification of overall composition 
along with either p and T, p and H, p and S, or T and V (see Sec. 5.4.3), the satisfaction of the 
tangent plane condition not only implies that a valid solution of the phase equilibrium 
calculation is located, but also that this solution is unique. For a number of other 
specifications, the satisfaction of the condition only verifies that the solution is proper, 
whereas the possible existence of alternative and equally valid solutions is not excluded. The 
dew point calculation at a specified temperature or pressure (see Table 5.3) in the retrograde 
region is an example where two solutions are frequently expected. 

A further important feature associated with the tangent plane condition is that by locating a 
trial phase composition that yields a negative tangent plane distance, the stability analysis 
usually provides a good starting point (concerning proper initial estimates) for the subsequent 
calculation of the correct phase distribution [see Michelsen and Mollerup (2004)]. Moreover, 
criteria for critical point calculations of mixtures consisting of an arbitrary number of 
components are readily derived from the properties of the tangent plane surface. The 
computational implementations of such criteria are briefly discussed by Michelsen and 
Mollerup (2004); see also Heidemann and Khalil (1980), Michelsen (1984), Michelsen and 
Heidemann (1988), and the recent articles of, for example, Henderson et al. (2004) and 
Nichita (2005), for further information and methodologies regarding the calculation of critical 
points in multi-component mixtures. 

Based on the principles described in this section, a well-founded and robust procedure for 
stability investigation combined with a two-phase pT flash algorithm (see Sec. 7.6.2), which 
was developed and provided by Michelsen (2001), was used in this work to develop routines 
which enable extensive and reliable property calculations from the new mixture model for 
natural gases and other mixtures. The developed user-friendly software (see Sec. 7.14) 
enables the calculation of a variety of thermodynamic properties in the homogeneous gas, 
liquid, and supercritical regions as well as the vapour-liquid equilibrium of multi-component 
mixtures consisting of any number of components considered in the new equation of state (see 
Table 4.2) with arbitrary composition. Note that no user-provided initial estimates are 
required, and the number of phases do not need to be known in advance. Furthermore, the 
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algorithms and routines are not limited to the current number of considered components in the 
new mixture model, but are easily extendable to additional components.  

To the knowledge of the author, this is the first time that such algorithms (which have so far 
been used, for example, for cubic equations of state, excess Gibbs free energy models, and 
“hybrid” models51) were successfully applied to a multi-fluid mixture model explicit in the 
reduced Helmholtz free energy. Aside from the required fugacity coefficients and its 
sophisticated partial derivatives (see Sec. 7.3) required, for example, for minimising tpd
[Eq. (7.99)], the provided algorithms were modified to meet the requirements of the 
developed multi-fluid mixture model. Moreover, a proper interface between the algorithm and 
the new equation of state had to be developed. Since the Michelsen algorithms use 
temperature, pressure, and composition as the independent variables, a very important 
condition for the successful implementation of these procedures is the development of a 
suitable and robust density solver. The density solver must supply the stability analysis and 
other routines with the proper and correct density which has to be iteratively determined for a 
specified T, p, and composition. Therefore, the characteristics of high accuracy mixture 
models based on multi-fluid approximations have to be taken into account (see Sec. 7.8). 

7.6 The Isothermal Two-Phase Flash 

The most important equilibrium calculation is probably the isothermal flash calculation, 
which is the equilibrium calculation at a specified mixture temperature T, pressure p, and 
overall composition, given as mole fractions x  or mole numbers n . For these flash 
specifications, the corresponding equilibrium conditions (see also Sec. 5.4.1) can be written 
using fugacities according to  

 ln lnf fi i 0 ,   i = 1, 2, ..., N, (7.100) 

or fugacity coefficients and K-factors: 

 ln ln lni i iK 0,   i = 1, 2, ..., N. (7.101) 

The Rachford-Rice equation relates the feed composition x  and the phase compositions for 
the liquid x  and the vapour x , the vapour fraction , and the K-factors [see also Eqs. (5.53) 
and (5.56)]: 

x x
x K

Ki i
i

N
i i

ii

N
a f a f

1 1

1
1

0. (7.102) 

                                                
51  In a hybrid model different models are used to describe the equilibrium phases, e.g. an activity 

coefficient or excess Gibbs free energy model for the liquid phase and a virial or cubic equation of 
state for the vapour phase.  

7.5   Phase Stability 
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A complicating factor in equilibrium calculations is that the number of phases may not be 
known in advance. Although in many practical applications at least two phases, namely a 
liquid and a vapour phase, may be expected, it is required to verify the solution by means of a 
stability analysis (see Sec. 7.5.1), as mixtures capable of forming multiple liquid phases may 
exceed the current (assumed) number of equilibrium phases, and thus, new phases have to be 
introduced. 

As mentioned in Sec. 5.4.3, successive substitution and the Newton-Raphson method are 
frequently applied solution methods, which directly solve the set of nonlinear equations for 
the unknown variables. In this work, property calculation routines were developed which are 
based on a flash algorithm developed by Michelsen [Michelsen (2001), Michelsen (1982b)]. 
This algorithm uses a combined and sophisticated strategy comprised of different classical 
and advanced numerical methods, such as successive substitution, Newton’s method, 
accelerated successive substitution, and a second order approach. Additionally, a tangent 
plane stability analysis is performed in questionable situations as described in Sec. 7.5.1. This 
strategy is briefly described in the following text. Further details are given by Michelsen and 
Mollerup (2004) and Michelsen (1982b).

7.6.1 Gibbs Free Energy Minimisation 

As already mentioned in Sec. 5.4.4, the correct solution of the isothermal equilibrium 
represents the global minimum of the overall Gibbs free energy. This important feature allows 
the equilibrium equations to be solved as an unconstrained minimisation problem using molar 
amounts as the independent variables and eliminating the amounts in one phase by means of 
the overall material balance [see Eqs. (5.67) and (5.68)].  

At a given T and p, the equilibrium equations can be written as 

g v f fi i i( ) ln ln 0 ,   i = 1, 2, ..., N, (7.103) 

where the independent variables v  are a vector of the vapour amounts vi. Rather than directly 
applying a Newton-Raphson procedure to solve Eq. (7.103) for the independent variables, it is 
advantageous to treat the flash calculation as a minimisation problem, using G nRT  as the 
objective function and the vapour amounts vi as the independent variables52. For the 
minimisation, the gradient vector of G nRT  is needed and obtained as [see also 
Eq. (7.103)]: 

                                                
52  Note that the total Gibbs free energy of the overall (equilibrium) system G equals the sum of the 

total Gibbs free energies of the equilibrium phases, i.e., G G . In terms of mole numbers, 
Eqs. (5.54) and (5.67) show that the molar flows of the vapour and liquid phases can be expressed 
as v n ni i /  and l n ni i / , where the total number of moles in the overall system n n n  is a 
constant due to the flash specification. Furthermore, it follows that l vi i/ 1. 
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The calculation of the elements Hij  of the Hessian matrix H according to
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ln ln ,   for all i and j, (7.105) 

is required and carried out analytically, which involves the composition derivatives from the 
multi-fluid mixture model as derived in Sec. 7.3. In terms of fugacity coefficients and with 
Eq. (5.67), for the vapour and liquid phases follows 

ln ln ln lnf v pi
i

i    and ln ln ln lnf l pi
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, (7.106) 

and the derivatives are 
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where the elements ij  for a phase of composition n  are given by
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Equation (7.108) equals the scaled composition derivatives of ln i that were determined in 
Sec. 7.3 [see Eq. (7.31)]. Finally, the complete expression for the Hessian matrix follows from 
Eqs. (7.105) and (7.107): 
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1 1a f a f . (7.109) 

It should be noted that the Hessian matrix for the minimisation problem is identical to the 
Jacobian matrix which would be required to solve the flash problem by means of a direct 
solution procedure based on the Newton-Raphson method (see Sec. 5.4.3).  

A Newton-Raphson method, which basically calculates the correction vector v  to the 
vapour flows v  from  

H v g v( ) , (7.110) 

can be used for solving the minimisation problem. This procedure is thus identical to the 
Newton-Raphson method for solving the flash as a set of algebraic equations. If the current 
estimate is sufficiently close to the solution, the Hessian matrix is positive definite and second 
order convergence is obtained. The iterations may fail if the Hessian matrix is not positive 
definite, which frequently is the case in early iterations. In order to guarantee convergence, a 
modified (“restricted step”) method using a diagonal correction term, multiplied by a stepsize 
control factor and added to the Hessian matrix, is used in the algorithm developed by 

7.6   The Isothermal Two-Phase Flash 
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Michelsen in case the step calculated with the unmodified Hessian matrix exceeds a 
prespecified maximum size. 

Each iterative step can be tested against the previous for a reduction in the overall Gibbs free 
energy of the mixture, thus providing a high level of safety by maintaining efficiency 
resulting from the second order convergence. Moreover, convergence to the trivial solution 
(see Sec. 5.4.1) can never occur as the algorithm requires a decrease in the Gibbs free energy 
at each step, which is of particular importance for calculations in the critical region. 
Unproductive iteration steps can be corrected to prevent divergence. 

A drawback in the use of second order methods is the requirement of the composition 
derivatives of the fugacity coefficients. These derivatives can, however, be coded quite 
efficiently, even for a complex equation of state such as the developed multi-fluid mixture 
model. By using a systematic approach where all derivatives are evaluated analytically (see 
Sec. 7.3), elements necessary for the calculation of the fugacity coefficients can, if required, 
also be used in a subsequent calculation of their derivatives. The computational effort of 
evaluating derivatives is easily compensated by the reduction of the number of iterations [see 
also Michelsen and Mollerup (1986) and Mollerup and Michelsen (1992)].

7.6.2 The Combined Strategy of Michelsen 

The traditional approach for two-phase flash calculations is based on the assumption that two 
phases will be present at equilibrium and an initial estimate of the phase compositions is used 
to initiate calculations. Vanishing of a phase during the iterative process is taken as indication 
that the specification corresponds to a single phase. The alternative approach starts with the 
stability analysis and the result is used to generate initial estimates for the flash calculation in 
case the feed mixture is concluded to be unstable. Both methods have their advantages and 
their disadvantages concerning efficiency and reliability.  

The strategy for solving the two-phase flash calculation problem pursued by the algorithm of 
Michelsen (2001) is a combination of the advantages of both approaches resulting in a very 
efficient and reliable algorithm. The calculations are initiated with the assumption that two 
phases will be present, but stability analysis is used at a very early stage if instability of the 
specified overall system (the feed) has not been verified.  

The algorithm starts by calculating feed fugacity coefficients and Wilson K-factors 
[Eq. (5.61)], which are used for calculating an initial estimate of the phase compositions by 
solving the Rachford-Rice equation, Eq. (7.102), for the vapour fraction  using Newton’s 
method. If the phases do not split with the Wilson K-factors (i.e. no solution of  exists in the 
range 0  1), the algorithm proceeds to the stability analysis (see Sec. 7.5.1). Otherwise, 
three steps of successive substitution are carried out to verify that the Gibbs free energy can 
be decreased.
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The difference between the Gibbs free energy of the split phases and the specified feed is 
given by 

G
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x x x x x xi i i
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1 1 1
a f a f a f a fln ln ln ln ln ln , (7.111) 

where ln ln ( , , )i i T p x , ln ln ( , , )i i T p x , and ln ln ( , , )i i T p x  [see Eq. (7.27)]. 
Using the material balance, x x xi i i1a f  [see Eq. (5.53)], Eq. (7.111) can be written 
as

G
nRT

tpd tpd1a f , (7.112) 

where

tpd tpd x x x xi i i i i
i

N
( ) ln ln ln lna f

1
 (7.113) 

and

tpd tpd x x x xi i i i i
i

N
( ) ln ln ln lna f

1
 (7.114) 

are the reduced tangent plane distances for the feed composition, using the current liquid- and 
vapour composition as the trial phases [see also Eq. (7.99)].  

After the initial three steps of successive substitution, the following conditions may occur: 

If the overall Gibbs free energy of the resulting vapour and liquid phases, i.e. 
G T p n G T p n( , , ) ( , , ) , is lower than G of the specified feed (assumed to be 
homogeneous), i.e. G T p n( , , ) , the presence of (at least) two equilibrium phases is verified. 
The calculation is then continued with an accelerated successive substitution procedure 
(three cycles of successive substitution, where each cycle consists of three steps, followed 
by an extrapolation). Each step of the iterative procedure requires the calculation of new, 
updated thermodynamic properties (e.g. the fugacity coefficients of the equilibrium 
phases), where the Rachford-Rice solver is used to calculate new phase compositions from 
the revised K-factors obtained from Eq. (5.58). If the accelerated successive substitution 
fails to converge, a Gibbs free energy minimisation using a second order, restricted step 
approach is performed as described earlier in this section.  

Even if G nRT  is positive it may occur that either tpd  or tpd  [see Eqs. (7.113) and 
(7.114)] is negative, and with that the feed is also known to be unstable.

If none of these events has occurred after three iterations, i.e. the initial three steps of 
successive substitution are inconclusive, the algorithm continues with the tangent plane 
stability analysis. 

7.6   The Isothermal Two-Phase Flash 
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If  exceeds its bounds, it is very likely that the specification corresponds to a single phase. 
As this is not a sufficient criterion, the algorithm continues with the stability analysis in 
this situation.  

Similar to the phase split calculation, the stability analysis is performed starting with a 
successive substitution approach. If required, the algorithm continues with a second order 
minimisation using the same principles as in the phase split calculation. In case the stability 
analysis reveals a phase split, an improved K-factor estimate is generated by the tangent plane 
analysis, and the algorithm proceeds with the phase split calculation. Otherwise the mixture is 
concluded to be homogeneous.  

As described in the previous paragraphs, many of the sophisticated routines used in the flash 
algorithm and tangent plane stability analysis require distinctive thermodynamic properties 
and, occasional, their derivatives. As with the stability analysis (see Sec. 7.5.1), it is again 
extremely important that the correct density is calculated from the multi-fluid mixture model 
for the specified flash variables (temperature, pressure, feed composition) and the phase 
compositions during the iterative process (see also Sec. 7.8). 

7.7 Calculation of Saturation Points and Phase Envelopes 

Aside from flash calculations at a specified mixture temperature, pressure, and overall 
composition as described in the previous section, phase equilibrium calculations with 
specified values of the vapour fraction  and either the temperature or the pressure are also of 
considerable interest in industrial applications. The most important cases are bubble point 
calculations (i.e.  = 0) and dew point calculations (i.e.  = 1), where, for a given composition 
x x  or x x , the determination of the saturation point at a specified p or T requires the 
calculation of either the temperature or pressure, and the composition of the incipient phase 
(i.e. the arising equilibrium phase).  

When the equilibrium pressure is low to moderate, for which the vapour phase behaves nearly 
ideally, the individual direct calculation of the mixture bubble and dew points is 
comparatively straightforward by using ideal solution based methods (where the fugacity 
coefficients are assumed to be composition independent). At elevated pressures, however, 
these type of calculations are much more difficult than the flash calculation. The essential 
problem associated with saturation point calculations is the unknown number of solutions. 
Moreover, a solution corresponding to a specified set of conditions may not even exist, for 
instance, for a specified pressure above the maximum pressure or a specified temperature 
above the maximum temperature at which two phases can coexist.

A further difficulty is the trivial solution (see Sec. 5.4.1) as a false solution to the specified 
conditions (often resulting from inaccurate initial estimates), since the trivial solution can 
exist for a wide range of values of the missing primary variable (i.e. T when p is specified, or 
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p when T is specified). Unfortunately, stability analysis cannot be used in the same manner as 
for pT flash calculations (see Sec. 7.6) to verify that the trivial solution is in fact the “true 
solution”, i.e. that a saturation point at the specified conditions does not exist, since either the 
temperature or the pressure is unknown53.

As no entirely satisfactory method exists for “blind” calculations (i.e. without initial 
estimates) of saturation points at arbitrary mixture conditions, the most reliable procedure for 
locating all solutions to a given set of specifications may be the stepwise construction of the 
entire phase boundary as recommended by Michelsen. Two different types of such algorithms 
enabling a rapid and accurate construction of the complete vapour-liquid phase boundaries for 
mixtures consisting of any number of components were applied and implemented in this 
work. The individual points on the phase boundary are calculated using a full Newton-
Raphson method, and initial estimates for subsequent calculations are obtained from 
information generated in earlier steps. The basic principles of these sophisticated algorithms, 
which were provided by Michelsen [Michelsen (2001), (2004)] and originally developed 
using cubic equations of state [see Michelsen (1980)], are described in the following sections. 
The new routines enable the calculation of phase boundaries and lines of constant vapour 
fraction (i.e. for vapour fractions in the range 0  1) including the compositions of the 
incipient or equilibrium phases from the new mixture model for any type of mixture 
consisting of the considered 18 natural gas components (see Table 4.2). In addition, dew and 
bubble points including the saturated phase densities can be calculated at user-defined values 
of temperature or pressure without any user-provided initial estimates. The algorithms are 
also capable of accurately determining the critical points and extrema in temperature and 
pressure54.

Further information on the direct calculation of saturation points and the construction of 
coexistence curves for two-phase and multi-phase multi-component systems are given by 
Asselineau et al. (1979), Michelsen (1980), (1984), (1985), (1986), (1994), and Michelsen 
and Mollerup (2004). 

7.7.1 Pressure-Based Phase Envelope Algorithm 

The pressure-based algorithm for the construction of phase boundaries is initiated by 
specifying the overall mixture composition x  and the vapour fraction , which can equal any 

                                                
53  For a given overall composition, the stability analysis is able to verify that a current pair of T and p

is located in the single-phase region, but this does not exclude the possibility that other values of the 
missing primary variable can represent a point on the phase boundary or in the two-phase region as 
well.

54  Aside from the ordinary mixture behaviour showing one critical point and a maximum in 
temperature and pressure on its phase boundary, different behaviour without any or more than one 
critical point as well as minima in temperature and pressure, or more than one temperature 
maximum can occur (see also Sec. 7.7.3). 

7.7   Calculation of Saturation Points and Phase Envelopes 
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value between 0 and 1 (note that x x  for  = 0, x x  for  = 1, and for 0  1, x  is 
the composition of the overall equilibrium system). For the vector of independent variables55

X , it is advantageous to choose the logarithm of the K-factor of each component i, and the 
logarithm of temperature and pressure, i.e. X Ki iln  (for i = 1, 2, ..., N), X TN 1 ln , and 
X pN 2 ln . These N 2 variables are related by the following N 1 equations: 

F T p x T p x Ki i i iln ( , , ) ln ( , , ) ln 0,   i = 1, 2, ..., N, (7.115) 

F x xN i i
i

N

1
1

0a f , (7.116) 

where the mole fractions in the liquid and vapour phases are given by (see Sec. 5.4.1) 
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To complete the set of equations to be solved, an additional equation, namely the specification 
equation [see also the passage “Formulation of a Set of Equations” in Sec. 5.4.1], is 
introduced which can be written in the general form56:

F X SN s2 0, (7.118) 

where the subscript “s” denotes the variable to be specified (this can be any of the N 2
chosen variables), and S is the desired value of this variable. Thus, the complete set of N 2
equations can be written as

F X( ) 0 . (7.119) 

To solve Eq. (7.119) for the unknown variables by means of a Newton-Raphson procedure, 
the set of nonlinear equations is linearised by a Taylor series keeping terms only to first order. 
The correction vector X  is then calculated from solving the corresponding linearised set of 
equations:  

J X F X( ) . (7.120) 

Similar to the elements Hij  of the Hessian matrix required for solving the flash problem by 
means of a Gibbs free energy minimisation approach (see Sec. 7.6), the elements Jij  of the 
Jacobian matrix J required to solve Eq. (7.120) are determined from the partial derivatives of 
all functions F X( )  with respect to all variables X  according to

J F
Xij

i

j
,   for all i and j. (7.121) 

                                                
55  For a given vapour fraction and overall mixture composition, temperature (at a specified pressure) 

or pressure (at a specified temperature), and the K-factors are the dependent variables. But they are 
the independent variables of the set of equations to be solved. 

56  The specification equation is not fixed to a certain variable. In the pressure-based algorithm, the 
specified variable that is automatically selected can be ln T , ln p , or ln Ki  of any component i; see 
the passage “Step Selection and Stepsize Control” in this subsection for further details.  
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The derivatives of Eq. (7.115) with respect to ln T  and ln p  require the derivatives of ln i

with respect to T and p [see Eqs. (7.29) and (7.30)] according to  
F
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For the derivatives of Eq. (7.115) with respect to ln Kj , the scaled composition derivatives of 
ln i [see Eq. (7.31)] are required57:
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Furthermore, the following equation is obtained for derivatives of the summation of mole 
fractions [Eq. (7.116)] with respect to ln Kj :
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and for the specification equation [Eq. (7.118)] follows  
F

X
N

s
sj

2 . (7.128) 

To provide the required thermodynamic property information from the mixture model, the 
iterative calculation of the saturated phase densities in each iteration step is required since 
pressure is used as the independent variable.

Constructing the Phase Envelope 

The sequence of calculations is initiated using a specification for which convergence is easily 
obtained and for which reasonable initial estimates can be generated. In the following 
example, a low pressure bubble point of p = 0.5 MPa is specified. Thus, s N 2 and 

                                                
57  Actually, the derivative of Fi  [Eq. (7.115)] with respect to ln K j  would require the mole fraction 

derivatives of ln i  and ln i . As mentioned in Sec. 7.3, the scaled derivatives with respect to total 
moles should be used instead.  

7.7   Calculation of Saturation Points and Phase Envelopes 
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S ln .0 5 [see Eq. (7.118)]. An initial estimate of the bubble point temperature can be 
calculated by iteratively solving the equation58

K xi i
i

N

1
1 0  (7.129) 

for T, where the K-factors are obtained from the Wilson K-factor approximation (see also 
Sec. 5.4.1): 
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Equation (7.129) ensures a unique solution since the K-factors calculated from Eq. (7.130) 
increase monotonically with temperature. If the temperature is specified, Eq. (7.129) can be 
explicitly solved for p. The initial saturation point then converges by taking a few steps using 
a successive substitution approach followed by a partial Newton’s method (neglecting 
composition derivatives) for final convergence.  

After the initial point has been generated, subsequent phase envelope points are calculated 
using a full Newton-Raphson method with initial estimates obtained from the previous points. 
For this purpose, the sensitivities of the independent variables with respect to the value of the 
specification S are evaluated by differentiating Eq. (7.119) with respect to S and solving the 
resulting set of linear equations 

F
X

X
S

F
S

 (7.131) 

for the sensitivity vector X S . The matrix of coefficients F X  does not require any extra 
calculations since it equals the Jacobian matrix J used for solving the system of equations [see 
Eqs. (7.120) and (7.121)] by means of the Newton-Raphson method. The right hand side 
vector is easily obtained since only Eq. (7.118) depends on the specification: 

F
S

0 0 0 1, , , , T . (7.132) 

The location of a new point on the phase boundary is then estimated from 

X S S X S X
S

S( ) ( ) . (7.133) 

If, for example, the next point is calculated at a pressure of 1.0 MPa, 
S ln . ln . ln1 0 0 5 2 , and an initial estimate for X S S( ) can be calculated from 

Eq. (7.133). For the following points on the phase boundary, a refined generation of initial 
estimates is used. The information of X  and its derivatives with respect to S determined at 

                                                
58  Equation (7.129) is obtained at the bubble point (  = 0), for which x xi i  and x K x K xi i i i i .

When assuming composition-independent fugacity coefficients for an ideal solution approximation, 
the saturation point calculation reduces to solving this single equation for T or p.
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two previous points is used to generate a polynomial expansion for each of the independent 
variables according to 

X C C S C S C Si i i i i, , , ,0 1 2
2

3
3. (7.134) 

The approximation by a third degree polynomial enables the calculation of very accurate 
interpolations of the points on the phase boundary as well as accurate extrapolations for initial 
estimates for the subsequent points to be calculated. 

Step Selection and Stepsize Control 

The variable to be specified for generating the entire phase boundary is initially selected as 
the pressure (see the example above). For the construction of subsequent points, other choices 
are more convenient due to several reasons as, for example: 

In the vicinity of the critical point, the selection of either the temperature or the pressure as 
the specified variable may easily lead to the trivial solution, with a subsequent breakdown 
as a result. 

As pressure increases towards the maximum pressure on the two-phase boundary, the 
sensitivities increase in magnitude and ultimately become infinite. Consequently, the point 
of maximum pressure cannot be passed in this manner. 

To overcome these difficulties during the sequential construction of the phase boundary, the 
variable to be specified is automatically selected by the algorithm depending on the 
magnitude of the largest sensitivity for each variable. Convergence is easier obtained by 
limiting all elements of the sensitivity vector to a magnitude of about 1, and selecting the 
most rapidly varying variable for the next step to be specified. In most cases, the automatic 
selection leads to the selection of ln Ki  for the least volatile or the most volatile component in 
the mixture. Specifying the (non-zero) value of ln Ki  for component i has the advantage that 
the risk of converging towards the trivial solution is eliminated. The disadvantage that, in 
principle, incomparable quantities like pressure and K-factor are to be compared, does not 
create problems in practice. 

The magnitude of the step is determined by the number of iterations used to obtain 
convergence in the equations at the previous point. A very small number of iterations 
indicates that the initial estimate is very accurate and that it is permissible to increase the 
stepsize, whereas much iteration indicates an initial estimate of poor quality requiring a more 
cautious approach. The iteration at the current point is abandoned in case a potential failure is 
indicated, and a new attempt is made with a smaller stepsize. The “target iteration count” is 
set to 3 or 4. One to three iterations lead to an increase in the stepsize and four or more 
iterations lead to a decrease.  

7.7   Calculation of Saturation Points and Phase Envelopes 
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The entire phase envelope can be traced in this manner without problems in passing critical 
points or the pressure and temperature extrema, which are found from the interpolation 
polynomials according to Eq. (7.134) based on the calculation of circumjacent points. 
Interpolated points are usually accurate to (0.01 – 0.02) K and (0.001 – 0.002) MPa. To 
be able to generate the bubble point line and the dew point line in the same sequence, the 
value of the vapour fraction  is kept fixed when passing the critical point, but the liquid 
phase now becomes the lighter phase and the vapour phase becomes the heavier phase. Using 
such an efficient and sophisticated procedure, only about 20 to 30 points with an average of 2 
to 4 iterations for each point need to be calculated on average for the construction of the entire 
(and well-shaped) phase boundary or of lines of constant vapour fraction for mixtures of 
arbitrary composition. 

7.7.2 Volume-Based Phase Envelope Algorithm 

A similar procedure as described in the previous section can be pursued by an alternative 
phase envelope algorithm. Although the basic principles concerning the sequential 
construction of the complete phase boundary along with the step selection and the stepsize 
control are identical, the temperature and total volumes of the saturated liquid and saturated 
vapour phases, i.e. V  and V , (or rather their logarithms) are chosen as the independent 
variables instead of temperature and pressure as was done for the pressure-based algorithm 
(see Sec. 7.7.1). For the N 3 independent variables, namely X Ki iln  (for i = 1, 2, ..., N), 
X TN 1 ln , X VN 2 ln , and X VN 3 ln , the following set of nonlinear equations can be 
formulated:  

F f T V x
n

f T V x
n

Ki
i

i

i

i
iln ( , , ) ln ( , , ) ln 0 , i = 1, 2, ..., N, (7.135) 
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F p T V x p T V xN 2 0( , , ) ( , , ) , (7.137) 

F X SN s3 0 . (7.138) 

The mole fractions in the liquid and vapour phases are given by 
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   and x K x

Ki
i i
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Equation (7.138) is the specification equation enabling the automatic selection of the variable 
to be specified by the algorithm for the subsequent point. Instead of using the fugacity 
coefficient, the ratio of the fugacity of component i and its mole number according to 
Eq. (7.34) is used to set up the equilibrium equations59. To be able to additionally determine 

                                                
59  The use of fugacity coefficients does not allow for calculations at negative pressures.  
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saturation points at specified pressures (e.g. at a user-defined value), the pressure (not its 
logarithm60) is used as an additional variable, i.e. X pN 4 , and another equation, namely the 
difference between the specified pressure and the saturated liquid phase pressure, is added to 
the above set of equations:

F p p T V xN 4 0( , , ) . (7.140) 

To solve the resulting set of N 4 equations for the N 4 independent variables by means of 
the Newton-Raphson method, the Jacobian matrix is required. Differentiation of all equations 
F  with respect to all independent variables X  yields the elements Jij  of the Jacobian matrix. 
The elements resulting from the partial derivatives of the equilibrium equations [Eq. (7.135)] 
with respect to ln T , ln V , ln V , p, and ln Kj  are obtained as follows [see also  
Eqs. (7.36) – (7.38)]: 
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The single prime indicates that the derivative of the abbreviated property has to be taken for 
the properties of the (saturated) liquid phase, whereas the double prime refers to the properties 
of the (saturated) vapour phase. Thus, the abbreviation iV  corresponds to the derivative of 
ln f ni ia f  with respect to V , and iV  is the derivative of ln f ni ia f  with respect to V . Instead 
of using the non-scaled composition derivatives according to Eq. (7.38) for ij , the respective 
scaled composition derivatives, i.e. n ij , can be used since it is iterated on a mixture where 
total moles will finally sum to unity. Furthermore, the advantage of a symmetric matrix 
occurs since ij ji .

For the difference in phase pressures [Eq. (7.137)], the partial derivatives can be expressed as: 
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60  For making the pressure specification comparable in the automatic step selection, a scaling factor is 

used.
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where
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For the additional equation which allows the specification of the pressure [Eq. (7.140)], it 
follows: 
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The non-zero derivatives of FN 1 with respect to ln Kj  and of FN 3 with respect to the 
specification variable Xs  are basically the same as those required for the pressure-based 
algorithm [see Eqs. (7.127) and (7.128)]. Aside from the derivatives of ln f ni ia f with respect 
to the independent variables, the calculation of pressure and its derivatives with respect to 
temperature and total volume (V  or V ) is required as evident from Eqs. (7.144) and (7.147) 
(see also Sec. 7.3). These calculations are straightforward. Since the total phase volumes are 
used as independent variables, no iterative density calculations are required during the 
sequential construction of the phase boundary. Note that the partial derivatives of Fi , FN 2 ,
and FN 4 with respect to ln Kj  would actually require mole fraction derivatives of ln f ni ia f ,
ln f ni ia f , p , and p . As mentioned before, this is not recommended and the derivatives with 
respect to total moles (here not scaled by n) are used instead61. The derivatives according to 
Eqs. (7.145) and (7.148) utilise the following identity: 
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Aside from the advantage that equations of state for which it is difficult to solve for the 
correct density, such as multi-fluid mixture models based on multi-parameter equations of 
state for the considered pure components (see also Sec. 7.8), are easy to handle, using the total 
phase volumes as independent variables instead of pressure has several further advantages 
[Michelsen (2005)]: 

Phase envelopes can be continued through unstable branches, where the derivative of 
pressure with respect to total volume, p V , is positive. Pressure-based algorithms are 
normally only allowed to choose the outer roots for the density, for which p V  is 
negative.

                                                
61  For a normalised mixture, which becomes ultimately the case in phase envelope calculations, the 

mole numbers finally become mole fractions, but in the differentiation they are treated as 
independent. 
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Problems associated with numerical round-off are less severe. This is particularly 
pronounced when p V  is small. 

Near critical azeotropes can be handled, which is difficult for numerical and other reasons 
with pressure-based algorithms.  

Phase envelopes can be followed to negative pressures. Quite often, negative branches are 
continuations of what is actually a liquid-liquid equilibrium and come back up again (see 
also Sec. 7.7.3). Therefore, only a single run is necessary to construct the complete phase 
boundary, whereas the pressure-based algorithm would require separate runs (one for 

 = 1, and another one for  = 0). 

The volume-based phase boundary calculations are initiated by specifying the overall mixture 
composition x  and the vapour fraction  as for the pressure-based algorithm (see Sec. 7.7.1). 
To determine the initial point for the sequential construction, the same procedure as for the 
pressure-based algorithm is used, which requires the algorithm to be supplied with the 
fugacity coefficients and its temperature derivatives. All subsequent points on the phase 
boundary are calculated using only the volume-based approach.  

7.7.3 Usual and Unusual Phase Envelopes 

The following selected examples demonstrate the capabilities of the implemented phase 
envelope algorithms and show usual and unusual phase behaviours of binary and multi-
component mixtures calculated using the new wide-range equation of state for natural gases 
and other mixtures (GERG-2004).  

Figure 7.1 shows a pT plot calculated for the 10-component mixture “NIST2”, representing a 
typical natural gas mixture containing about 91 mole-% of methane, 3 mole-% of nitrogen, 
and 4.5 mole-% of ethane (see also Table 7.13). In order to simplify the notation throughout 
this and the following sections, and the following chapters, all of the concentrations given in 
percent are in mole-%. In addition to the phase boundary indicated by the solid line (where 
equals 1 or 0), three lines of constant vapour fraction62, namely  = 0.99 (or  = 0.01), 

 = 0.90 (or  = 0.10), and  = 0.50, indicated by the dashed, dot-dashed, and dot-dot-dashed 
lines, are calculated. All of these lines have the same tangent at the mixture critical point, 
except for  = 0.50, which appears similar to a vapour pressure curve of a pure component. A 
large retrograde region extends from the critical point at 205.19 K and 6.058 MPa to the 
maximum temperature of 241.16 K and the maximum pressure of 6.748 MPa.  

                                                
62  The calculations were performed with  = 1,  = 0.99, and  = 0.90. The algorithm continues the 

calculation when passing the critical point, and thus, the lines for 1  are obtained from the same 
run (see the passages “Constructing the Phase Envelope” and “Step Selection and Stepsize Control” 
in Sec. 7.7.1). For  = 0.50, only a single curve, which does not span an area in the pT surface, 
exists.
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Fig. 7.1 Phase envelope and lines of constant vapour fraction  for the simulated natural gas 
“NIST2” as calculated from the new equation of state (GERG-2004), Eqs. (7.1) – (7.10); 
for the mixture composition see Table 7.13. The definition of  is given by Eq. (5.54). 

Fig. 7.2 Phase envelopes for the simulated natural gases “GU1” and “GU2”, the natural gas “N75”, 
and the simulated rich natural gas mixture “RNG5” as calculated from the new equation of 
state (GERG-2004), Eqs. (7.1) – (7.10); for the mixture compositions see Table 7.13. 
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The phase boundaries of different natural gases containing comparatively high fractions of 
nitrogen (“GU1”, solid line), carbon dioxide (“GU2”, dashed line), and ethane (“N75”, dot-
dashed line) are shown in Fig. 7.2. The maxima in temperature and pressure of the respective 
phase boundaries vary between 212.07 K and 254.55 K, and 6.189 MPa and 7.714 MPa. 
Natural gases containing comparatively large amounts of ethane, propane, n-butane, and 
heavier alkanes are characterised by a phase behaviour similar to the one shown for the rich 
natural gas “RNG5” (dot-dot-dashed line), which has a maximum temperature of 302.38 K 
and a maximum pressure of 10.246 MPa. The complete molar compositions of all of these 
selected mixtures are listed in Table 7.13.  

Table 7.13 Molar compositions of selected simulated and true natural gases, and a simulated rich 
natural gas mixturea

Component Mixture composition (mole fractions) 
 NIST2 GU1 GU2 N29 N75 RNG5 

Methane 0.906724 0.814410 0.812120 0.757200 0.859284 0.639757 
Nitrogen 0.031284 0.134650 0.057020 0.137510 0.009617 0.020246 
Carbon dioxide 0.004676 0.009850 0.075850 0.071770 0.015021 0.079923 
Ethane 0.045279 0.033000 0.043030 0.025220 0.084563 0.119742 
Propane 0.008280 0.006050 0.008950 0.004110 0.023022 0.100102 
n-Butane 0.001563 0.001040 0.001520 0.000850 0.004604 0.033144 
Isobutane 0.001037 0.001000 0.001510 0.000580 0.002381 – 
n-Pentane 0.000443 – – 0.000470 0.000630 0.005074 
Isopentane 0.000321 – – 0.000260 0.000588 – 
n-Hexane 0.000393 – – 0.000230 0.000228 0.002012 
n-Heptane – – – 0.000190 0.000057 – 
n-Octane – – – 0.000030 0.000005 – 
Helium – – – 0.001580 – – 
a See also Table A2.3 of the appendix. 

Multi-fluid approximations are not only capable of accurately describing the thermal and 
caloric properties in the homogeneous gas, liquid, and supercritical regions of multi-
component mixtures (see Chap. 8), but also their phase behaviour. Figures 7.3 – 7.6 show pT
plots of the phase boundaries of different synthetic natural gas mixtures including the recently 
measured dew point data of Mørch et al. (2006) (see Fig. 7.3), Avila et al. (2002a) (see 
Fig. 7.4), and Jarne et al. (2004a) (see Figs. 7.5 and 7.6). The compositions of these mixtures 
are given in Table 7.14. Aside from the two “dry” natural gases, Jarne et al. (2004a) measured 
dew points of mixtures of these gases with water. Selected results of these measurements are 
shown in Fig. 7.5 for 0.172% water and in Fig. 7.6 for 0.154% water in addition to the dry 
mixtures. The comparisons demonstrate that the new mixture model is able to accurately  
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Fig. 7.3 Comparison of the vapour-liquid phase boundary of a four-component hydrocarbon 
mixture as calculated from the new equation of state (GERG-2004), Eqs. (7.1) – (7.10), and 
the cubic equation of state of Peng and Robinson (1976) with the corresponding 
experimental (dew point) data measured by Mørch et al. (2006); for the mixture 
composition see Table 7.14. 

Fig. 7.4 Comparison of the vapour-liquid phase boundary of a 12-component synthetic natural gas 
as calculated from the new equation of state (GERG-2004), Eqs. (7.1) – (7.10), and the 
cubic equation of state of Peng and Robinson (1976) with the corresponding experimental 
(dew point) data measured by Avila et al. (2002a); for the mixture composition see 
Table 7.14. 
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Fig. 7.5 Comparison of the vapour-liquid phase boundaries of a 10-component synthetic natural gas 
and its mixture with water as calculated from the new equation of state (GERG-2004), 
Eqs. (7.1) – (7.10), with the corresponding experimental (dew point) data measured by 
Jarne et al. (2004a); for the composition of the dry gas see Table 7.14. 

Fig. 7.6 Comparison of the vapour-liquid phase boundaries of a 10-component synthetic natural gas 
and its mixture with water as calculated from the new equation of state (GERG-2004), 
Eqs. (7.1) – (7.10), with the corresponding experimental (dew point) data measured by 
Jarne et al. (2004a); for the composition of the dry gas see Table 7.14. 
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predict the dew point conditions of different types of natural gases, even for mixtures 
containing, for example, about 26% of carbon dioxide (see Fig. 7.5).

As the phase behaviour of multi-component mixtures is considerably sensitive to errors in the 
mixture composition, especially when heavier hydrocarbons such as n-hexane or n-octane are 
involved, one has to be very careful in assessing the data and their representation by equations 
of state. Even small amounts of secondary or minor components frequently result in a 
significantly different phase behaviour. Comprehensive investigations have shown that the 
representation of multi-component dew point data by the GERG-2004 formulation yields, on 
average, similar or better results than other equations (e.g. cubic equations of state and their 
modifications) although the new equation of state was not fitted to any multi-component 
mixture data. Figures 7.3 and 7.4 show that the cubic equation of state of Peng and Robinson 
(1976) with binary interaction parameters taken from Knapp et al. (1982) deviates 
significantly from the experimental data, especially at elevated pressures. It is also interesting 
to note that none of the equations used by the different authors for comparisons are able to 
reproduce the measurements considerably better than the new equation of state, even if they 
are fitted to the data [see, for example, Mørch et al. (2006)]. 

Table 7.14 Molar compositions of selected synthetic natural gas mixtures 

Component Mixture composition (mole fractions) 
 Mørch et al.  Avila et al.  Jarne et al.  Jarne et al.
 (2006) (2002a) (2004a), M1 (2004a), M2 

Methane 0.966110 0.833482 0.691140 0.844460 
Nitrogen – 0.056510 0.015590 0.007720 
Carbon dioxide – 0.002840 0.259080 0.017000 
Ethane – 0.075260 0.026200 0.086830 
Propane – 0.020090 0.004230 0.032970 
n-Butane 0.014750 0.005200 0.001040 0.005890 
Isobutane 0.015270 0.003050 0.001050 0.002930 
n-Pentane 0.003850 0.001440 0.000230 0.000860 
Isopentane – 0.001200 0.000340 0.000840 
n-Hexane – 0.000680 0.001100 0.000500 
n-Heptane – 0.000138 – – 
n-Octane – 0.000110 – – 

Figure 7.7 displays an ordinary binary mixture phase behaviour exemplified for the methane–
ethane system at about 15%, 50%, and 85% of ethane including selected experimental data 
reported by Bloomer et al. (1953) and Ellington et al. (1959) for the respective three mixture 
compositions. In addition, the vapour pressure curves of pure methane and pure ethane 
calculated from the new equation of state are shown along with the complete critical line of 
the binary system. The measured bubble and dew point pressures of the two authors are 
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reproduced by the new equation of state with average absolute deviations of less than 1.8% 
for the complete data set of Bloomer et al. (1953) and less than 1.5% for the measurements of 
Ellington et al. (1959), which is in agreement with the targeted uncertainty for the best 
measured vapour pressure data (see also Chaps. 6 and 8, and Table A2.1).

Fig. 7.7 Phase diagram for the methane–ethane binary mixture showing the vapour pressure curves 
of pure methane and pure ethane, the vapour-liquid phase boundaries at ethane mole 
fractions of about 15%, 50%, and 85%, and the critical line as calculated from the new 
equation of state (GERG-2004), Eqs. (7.1) – (7.10); the experimental data for the binary 
mixture are plotted for comparison. 

Aside from this ordinary phase behaviour, other binary mixtures, such as the methane–
n-butane system and the methane–helium system, displayed in Figs. 7.8 and 7.9, show a 
totally different behaviour. Although the methane–n-butane system containing 1% of 
n-butane (dashed line) shows very common phase behaviour, the mixture containing only 
0.1% n-butane (solid line) shows two temperature maxima at 192.18 K and 191.84 K and a 
temperature minimum at 187.70 K is observed (see Fig. 7.8). Furthermore, two retrograde 
condensations occur for an isothermal expansion as the critical point is located at 191.64 K 
and 4.717 MPa, which is below the maximum temperatures. This behaviour is in agreement 
with the results obtained from other equations of state. Mixtures containing helium are  
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Fig. 7.8 Phase envelopes for the methane–n-butane binary mixture at n-butane mole fractions of 
0.1% and 1% as calculated from the new equation of state (GERG-2004),  
Eqs. (7.1) – (7.10). 

Fig. 7.9 Phase envelopes for the methane–helium binary mixture at helium mole fractions of 1% 
and 10% and the natural gas “N29” as calculated from the new equation of state (GERG-
2004), Eqs. (7.1) – (7.10); for the composition of the natural gas mixture see Table 7.13. 
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characterised by a bubble point branch extending to infinity, where the phase boundary may 
have a pressure maximum and minimum similar to the methane–helium system containing 
1% helium (solid line), or no pressure extrema such as the mixture containing 10% of helium 
(dashed line). Natural gases containing a small amount of helium show a phase behaviour 
similar to the one for the 13-component mixture “N29” (dot-dashed line) shown in Fig. 7.9, 
revealing that a small helium content has a pronounced influence on the phase behaviour of 
natural gases and related mixtures at low temperatures63; see also Gonzalez and Lee (1968), 
who illustrated the effect of helium on the phase behaviour of natural gases by measuring dew 
and bubble points for several simulated natural gas samples. Very similar phase behaviour is 
observed for hydrocarbon mixtures and natural gases containing hydrogen as compared to 
those shown in Fig. 7.9.

Frequently, the sequential construction of the phase envelope results in intersecting phase 
boundaries, similar to the one for the methane–ethane–n-octane ternary mixture shown in 
Fig. 7.10. This selected mixture consists of 72% methane, 20% ethane, and 8% n-octane. The 
phase envelope intersects itself in the low temperature region on the bubble point line at about 
210.7 K and 5.93 MPa. At this point the coexistence of three phases, where the liquid phase 
of the overall mixture composition is in equilibrium with an incipient liquid and an incipient 
vapour phase of different compositions64, is observed. The intersection part is shown in detail 
in Fig. 7.11, where the characteristic “swallowtail” pattern is evident. The branch from 
temperatures below 201 K up to the intersection point represents vapour-liquid equilibrium 
(with an incipient vapour phase). At approximately 210.7 K, the vapour-liquid equilibrium 
line crosses the two-phase boundary and becomes unstable (the swallowtail part is of no 
physical meaning). Following the swallowtail part of the curve, the incipient vapour phase 
gradually becomes closer and closer to the liquid in composition (the composition of the 
incipient phase changes continuously along the swallowtail part) until the intersection is 
reached again, where the incipient phase is now a liquid-like phase. The branch on the phase 
boundary extending from the three-phase point up to the critical point of the mixture 
represents liquid-liquid equilibrium. Further investigations will probably reveal a three-phase 
region extending from the three-phase point similar to the one shown by Michelsen (1986) for 

                                                
63  Due to such a phase behaviour, it is recommended to always initiate the sequential construction of 

phase boundaries (or lines of constant vapour fraction) from the dew point line, i.e., for  = 1 (or 
 0.5), for which proper initial estimates are available at low pressures. Initial estimates for a 

low-temperature bubble point are not easy to generate for mixtures showing a strongly nonideal 
bubble point behaviour at low temperatures. 

64  The incipient phases are the coexisting equilibrium phases for a specified composition. For instance, 
on the vapour-liquid dew point line, the saturated vapour phase of a specified (overall) mixture 
composition is in equilibrium with an incipient liquid phase of different composition. On the 
vapour-liquid bubble point line, the saturated liquid phase of a specified (overall) mixture 
composition is in equilibrium with an incipient vapour phase of different composition. At the three-
phase point, two incipient phases occur that are all in equilibrium with the specified composition. 
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Fig. 7.10 Phase envelope for a ternary hydrocarbon mixture as calculated from the new equation of 
state (GERG-2004), Eqs. (7.1) – (7.10); the mixture composition is as follows: 72% CH4,
20% C2H6, and 8% n-C8H18.

Fig. 7.11 Detail of the phase envelope for the methane–ethane–n-octane ternary mixture shown in 
Fig. 7.10. 
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a comparable mixture. The boundaries of this region cannot be calculated with a procedure 
limited to two coexisting phases. Nevertheless, the point of intersection provides an estimate 
of the phase compositions for a subsequent three-phase calculation or the construction of the 
boundaries of the three-phase region. Under certain conditions, the minimum of the 
swallowtail part can be located at a negative pressure. In such a case, the pressure-based 
algorithm is not able to construct the complete phase boundary in a single run (see also 
Sec. 7.7.2). 

The principles used for calculating phase boundaries for the two-phase region can easily be 
extended to enable the calculation of the phase boundaries of three-phase regions (such as a 
three-phase bubble line where a light and a heavy liquid phase are in equilibrium with an 
incipient vapour phase, or a vapour-liquid-liquid three-phase boundary where one of the two 
liquid phases is the incipient phase) by introducing an additional set of K-factors and a phase 
fraction for the phase split between the two present phases as new variables [see Michelsen 
(1986) and Pedersen et al. (1996)]. This calculation, however, is not as easy to automate as 
with the two-phase boundary due to numerous additional complicating factors. One being that 
an initial estimate for the compositions of the two dense phases at liquid-liquid equilibrium is 
needed (see also Sec. 5.4.2). Even though the two-phase algorithms presented in the previous 
sections do not allow for quantitative information about the precise location of the three-phase 
region, it is worthwhile to note that many essential qualitative features of the phase diagram 
can be estimated purely from the false (unstable) two-phase calculation [see also Michelsen 
(1986)].

The three-phase behaviour of binary and multi-component mixtures will become an 
interesting issue when extending the current mixture model by further implementing the 
natural gas component hydrogen sulphide. Mixtures rich in hydrogen sulphide are of great 
importance in technical applications dealing with acid gases and raw natural gases (see also 
Chap. 9) and are capable of three-phase equilibrium [e.g. Ng et al. (1985); see also 
Heidemann and Khalil (1980) and Michelsen (1980), (1986)]. 

7.8 Development of a Proper Density Solver 

As mentioned in the previous sections, the correct solution of the density from the mixture 
model developed here or any other equation of state for mixtures at a specified mixture 
temperature, pressure, and composition is extremely important for a successful 
implementation of such property calculation algorithms. The roots of cubic equations of state 
such as the equation of Peng and Robinson (1976) [see Sec. 2.1.2], a simple cubic 
polynomial, can be calculated explicitly using the cubic formula. The total number of roots is 
explicitly given by this closed-form solution with three as the maximum number of solutions. 
Furthermore, in the case of three density roots, the middle root is always the one 
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corresponding to the largest value of the Gibbs free energy of all roots for the given mixture 
conditions (T, p, and x ). Thus, such an “unstable” root cannot only be identified by the fact 
that it is the middle root at which the derivative of pressure with respect to density, p , is 
negative (or p V  is positive), but alternatively from the fact that it corresponds to a higher 
Gibbs free energy compared to the outer solutions. Since no (auxiliary) equations are 
available for accurately describing the saturated phase densities of any type of mixture, these 
techniques can be used for stability analysis procedures, phase equilibrium calculations, etc. 

Using multi-parameter equations of state such as that used here requires an iterative 
calculation for the density at the specified mixture conditions. Unfortunately, for such 
empirical mixture models, the number of density solutions is not limited to three and, 
furthermore, not known explicitly65. A further complicating factor is that physically wrong 
solutions (resulting from multiple loops) do not necessarily correspond to higher values of the 
Gibbs free energy. Moreover, there are physically wrong solutions for which p  is 
positive (see also Fig. 7.12). Nevertheless, in the extended fluid region, only this type of an 
empirical equation of state, being a single and thus completely consistent model for the gas 
and liquid phases, the supercritical region, and the phase equilibrium, is able to represent 
state-of-the-art data for thermal and caloric properties of binary and multi-component 
mixtures within their experimental uncertainty.  

As an example, the pressure-density plot given in Fig. 7.12 shows three isotherms for 
different mixture compositions calculated from the new mixture model at the same 
temperature of 200 K. The isotherm represented by the solid line corresponds to the (overall) 
composition of the mixture NIST2, which is a 10-component typical natural gas mixture (see 
also Table 7.13). The isotherm has a monotonically increasing shape and only one single 
density solution exists for any value of pressure. At a specified pressure of 4.5 MPa, the 
density amounts to 5.27 mol dm 3 and the molar Gibbs free energy of this particular point 
equals 4322.44 J mol 1. The stability condition derived in Sec. 7.5.1 is, however, not  

                                                
65  The multiple density solutions result from the characteristics of the accurate multi-parameter pure 

substance equations of state (see Chap. 4) in the two-phase region. These equations form the basis 
of the multi-fluid mixture model. Additionally, the departure functions developed for some of the 
binary mixtures contribute to this behaviour to some extent. As mentioned in Sec. 4.6, Lemmon and 
Jacobsen (2005) developed a functional form enabling the elimination of such undesirable 
characteristics of modern multi-parameter pure substance equations of state and presented an 
equation of state for the pure fluid pentafluoroethane which exhibits a more fundamentally 
consistent behaviour in the two-phase region. Whether such a functional form also enables the 
highly accurate description of the properties of pure substances similar to that achieved by reference 
equations of state still needs to be investigated. It is furthermore not known whether multi-fluid 
mixture models based on such equations of state are able to accurately describe the thermodynamic 
properties of mixtures with the same quality as, for example, the new mixture model. As 
experienced in this work, the multiple density solutions can be handled in a quite efficient and 
reliable way, without any problems concerning the calculation of thermodynamic properties for the 
various types of mixtures investigated in this work. 
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Fig. 7.12 Pressure-density diagram showing three isotherms for different mixture compositions 
calculated from the new mixture model at a temperature of 200 K. The isotherm 
represented by the solid line corresponds to the (overall) composition of the simulated 
natural gas “NIST2” (see Table 7.13). The isotherm indicated by the long-dashed line 
corresponds to the composition of the saturated liquid phase, and the dot-dashed line 
represents the isotherm for the composition of the saturated vapour phase, determined from 
a pT flash calculation for the overall mixture composition at a pressure of 4.5 MPa. 

satisfied at this point and the stability analysis performed for the given mixture condition 
reveals a stable system for a vapour-liquid phase split at a given temperature, pressure, and 
overall mixture composition. The isotherm indicated by the long-dashed line corresponds to 
the liquid phase composition (rich in ethane, propane, and heavier alkanes) and the dot-
dashed line represents the isotherm for the vapour phase composition (rich in methane) in 
equilibrium with the liquid phase determined from the flash calculation for the overall feed 
composition of the mixture. The molar Gibbs free energy of the resulting equilibrium system 
amounts to 4305.74 J mol 1 (which is lower than G of the unstable feed) calculated as the 
sum of the total Gibbs free energies of the two phases66. Although the dot-dashed isotherm 
shows a similar shape as compared to the isotherm of the feed composition, the one for the 
liquid phase composition shows the characteristic multiple loops. This is only one example of 
possible behaviour of a mixture at equilibrium. For instance, all of the isotherms for the feed 

                                                
66  Note that the molar Gibbs free energy g of the overall equilibrium system is given by the sum of the 

molar Gibbs free energies g  and g  of the equilibrium phases according to g g g( )1 . In 
the example,  0.853567, g  2921.08 J mol 1, and g  4543.28 J mol 1 at saturated phase 
densities of 17.28 mol dm 3 and 4.61 mol dm 3.

7.8   Development of a Proper Density Solver 
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and equilibrium compositions can show a continuously increasing shape or all can exhibit 
multiple loops with the possibility for very large positive or negative values for pressure. 
Under certain mixture conditions several other circumstances have to be taken into account as 
explained below. 

Fig. 7.13 Plot of the function given by Eq. (7.150) as calculated from the new mixture model for the 
composition of the saturated liquid phase of the example shown in Fig. 7.12 at pressures of 
4.5 MPa (long-dashed line) and 2.0 MPa (dot-dot-dashed line), and at a temperature of 
200 K. 

When multiple loops occur, one of the outer roots might be a false (physically wrong) 
solution as shown in Fig. 7.12 for the isotherm corresponding to the liquid phase composition 
for a density value of 9.74 mol dm 3. The calculation of the Gibbs free energy of the outer 
solutions is, in general, of no help here, as the Gibbs free energy of the false solution might be 
lower than the one for the correct solution. In this case, the solution at the highest density is 
indeed the root with the lowest Gibbs free energy (see also Fig. 7.13). The limiting densities 
are those obtained at the outer local extrema of the pressure function. The valid density 
solutions are located below the outer local maximum of p for a gas-like root, and above the 
outer local minimum of p for a liquid-like root. Thus, only one solution is valid for the 
isotherm of the liquid-like composition shown in Fig. 7.12.  

Assuming a pressure of 2.0 MPa for this isotherm, there are five solutions, and two outer 
“real” solutions exist. In this example, the outer gas-like root has a lower Gibbs free energy 
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than the other solutions, but the middle root has a lower Gibbs free energy than the outer 
liquid-like root. This is shown in the plot of the function

q A p V nRTspecc h  (7.150) 

versus density in Fig. 7.13 calculated from the new mixture model for the liquid phase 
composition in the example shown in Fig. 7.12 at specified pressures pspec of 4.5 MPa (long-
dashed line) and 2.0 MPa (dot-dot-dashed line), and T Tspec  200 K. For such a 
formulation, the density roots of the equation of state are found at the local extrema of 
Eq. (7.150) in case of multiple solutions67. This enables the development of a density solver 
based on a minimisation procedure where the total volume V is chosen as the independent 
variable. The first derivative of this function with respect to total volume [i.e. the gradient of 
the objective function, Eq. (7.150)] is zero at the stationary points, and the second derivative 
equals p V  (divided by nRT), which is positive at the local minima and negative at the 
local maxima. The local maxima always indicate unstable density solutions, whereas the outer 
local minima correspond to “real” solutions when no points of inflexion are found at densities 
below the lowest root and above the highest root. Equation (7.150) equals the reduced (molar) 
Gibbs free energy G nRT  at their local extrema. The points of inflexion can be determined 
by minimising (or maximising) q V  in the vicinity of the local minima of Eq. (7.150). The 
use of a minimisation procedure to solve the equation of state for the proper density as 
described above generally gives additional safety as compared to the traditional root finding 
algorithms used in this work, but still requires a search for the (valid) solution with the 
minimum of the objective function. 

The following cases should usually be considered when calculating the density for a specified 
mixture temperature, pressure, and molar composition: 

Only one density root exists. This is the common case for many mixture conditions and 
requires no additional effort. Note that a single solution does not imply that the system is 
stable in terms of a homogeneous mixture (the same is valid for all other cases). 

Multiple roots exist, and two outer “real” roots were determined. The root that corresponds 
to the lower Gibbs free energy is taken since this is the most “promising” solution (but 
should not be confused with a stability analysis which determines whether the mixture is 
stable or unstable at the specified conditions). For (pressure-based) phase envelope 
calculations, however, the algorithm must be supplied with either the vapour-like or liquid-
like solution even though this might not be the one with the lowest Gibbs free energy. The 
selection of an “unstable” root which is closest to the root of the previous step (of the 
stepwise phase envelope construction) often allows calculations through an unstable part of 
the phase diagram (see Figs. 7.10 and 7.11). Choosing the “stable” root itself 

                                                
67  The existence of only one density solution is the equivalent of the existence of only one minimum 

of Eq. (7.150).

7.8   Development of a Proper Density Solver 
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(corresponding to the lowest Gibbs free energy) could imply that the calculation is unable 
to proceed. 

Multiple roots exist, and two outer roots were determined. The outer local extrema of the 
pressure function testify that one of these roots is a physically wrong solution resulting 
from the multiple loops. The one “real” root is taken as the solution. 

Tracing the isotherm for the roots of p pspec and local extrema in p starting from a very 
low and a very high density is a safe but not very efficient method for deciding whether an 
iterated density corresponds to a physically reasonable solution. In this work, the density 
solutions explicitly obtained from the cubic equation of state of Peng and Robinson (1976) are 
used as initial estimates for the iterative calculation and the number of solutions obtained 
from the cubic formula are taken as a “hint” of the number of “real” roots that have to be 
solved from the multi-fluid mixture model. In general, it is very likely that only one correct 
solution will exist for the multi-fluid mixture model if the cubic solution reveals only one 
solution. Nevertheless, as the cubic root might deviate significantly, i.e. (5 – 8)% for gas-like 
densities and (10 – 15)% for liquid-like densities, from the solution obtained from the multi-
fluid mixture model (see also Sec. 2.1.2 and Chap. 8), the iteration has to be controlled at least 
for unstable branches where p  is negative. If the density solver fails to find a density for 
some reason, the property interface switches to a subsequent root checker which analyses 

p  along the isotherm starting from a very low density and from a very high density. The 
reciprocal of the molar co-volume b [see Eq. (2.3)], which is available from the cubic solution 
at the current mixture composition, is a good upper boundary for the calculations at the higher 
densities. If two density solutions are found (the maximum number of solutions is two 
because the search is started from the outer limits of the isotherm), they should be analysed 
and the one with the lowest Gibbs free energy or the solution demanded by the property 
calculation algorithm will be chosen. 

7.9 Minimisation (or Maximisation) of Helmholtz Free Energy Based 
Flash Formulations 

As described in Secs. 7.5.1 and 7.6, the algorithms used for stability analysis and pT flash 
calculations are based on the minimisation of the Gibbs free energy. The importance of G
derives from the fact that its natural variables are temperature, pressure, and composition, 
which are the variables most accessible to measure and control in the laboratory. Moreover, 
these are the independent variables favoured by engineers in the design of chemical processes. 
Many models based on the excess Gibbs free energy have been developed, which are 
frequently used along with simple equations of state in hybrid models to describe the phase 
equilibrium of mixtures (see also Chap. 2 and Sec. 7.4). As described in the previous section, 
the use of algorithms based on the minimisation of the Gibbs free energy requires, however, 
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the (iterative) calculation of the density from equations of state for mixtures for the given set 
of values for T, p, and x  (or n ). Although this can be handled in a quite efficient and reliable 
way, algorithms based on the minimisation of flash formulations using the Helmholtz free 
energy A (depending on its natural variables temperature, total volume, and composition) are 
advantageous in itself for critical point calculations and in connection with state-of-the-art 
multi-fluid mixture models explicit in the reduced Helmholtz free energy, for which it is 
difficult to solve for the correct density (see Sec. 7.8). For this, the traditional calculation of 
thermodynamic properties at a specified temperature, pressure, and composition is abandoned 
in favour of a calculation at a specified temperature, total volume, and composition (see also 
Sec. 7.7.2).

As mentioned in Sec. 5.4.4, all of the flash calculations for the different specifications listed 
in Table 5.4 can be formulated as minimisation (or maximisation) problems using the 
Helmholtz free energy as the core function as will be briefly described in the following 
subsections. For simplicity, a feed of n = 1 mole of composition x  is considered in all cases.  

7.9.1 Solution to the pT Flash Using Volume-Based Variables 

The pT flash calculation can also be carried out using unconstrained minimisation with 
“volume-based” thermodynamics by formulating the objective function  

Q A p Vspec , (7.151) 

where the total phase volumes V  and V , and the vapour flows v  are chosen as the 
independent variables68 [see Michelsen (1999) and Nagarajan et al. (1991), who primarily 
proposed and investigated the volume-based pT flash]. Equation (7.151) satisfies the 
equilibrium conditions at its stationary point according to: 

Q
vi

i i , i = 1, 2, ..., N, (7.152) 

Q
V

p pspec , (7.153) 

Q
V

p pspec , (7.154) 

and in addition, the second derivatives of Q with respect to V , V , and vi have the correct 
sign (  0) as is evident from the following relations:  
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Thus, the solution to the pT flash problem is found at the minimum of Q [Eq. (7.151)].  

                                                
68  The liquid flows were eliminated since l x v  for the specified overall mixture composition x

(see also Sec. 5.4.4). 
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Note that Eq. (7.152) can also be written in terms of fugacity coefficients [see Eq. (7.27)] 

Q
v

RT v p l p
i

i
i

i
i

L
NM

O
QPln ln ln ln ln ln

1
, i = 1, 2, ..., N, (7.156) 

or in terms of the component fugacity over mole number ratios [see Eq. (7.34)] according to 
Q
v

RT f n f n v l
i

i i i i i iln ln ln lna f a f , i = 1, 2, ..., N. (7.157) 

Aside from the gradient vector of Q, the Hessian matrix, which comprises all second 
derivatives of Q with respect to all independent variables, is required for the minimisation 
[see also Eqs. (7.104) and (7.105)]. Since the total phase volumes are used as independent 
variables, Eq. (7.157) is advantageous, and the derivatives of the logarithm of the component 
fugacity over mole number ratios with respect to V , V , and vi are given by or can easily be 
obtained from the respective derivatives derived in Sec. 7.3 [see Eqs. (7.37) and (7.38)]. 
Nevertheless, Eq. (7.156) can also be used, but this requires the derivatives of ln i with 
respect to total volume or with respect to mole numbers at constant total volume (not at 
constant pressure), which can, however, be easily derived from Eqs. (7.30) and (7.31) and the 
derivatives of pressure with respect to total volume and with respect to mole numbers 
according to Eqs. (7.62) and (7.63). The same pressure derivatives are required for the 
derivatives of Eqs. (7.153) and (7.154) with respect to V , V , and vi.

7.9.2 Solution to the TV Flash Using Volume-Based Variables 

The TV flash can be solved as an unconstrained minimisation of the Helmholtz free energy 
(i.e. Q = A). For the two-phase TV flash, the desired molar flows v  and l  are found as the 
solution to

min , , , ,A T V V v lb g  (7.158) 

subject to the constraints  

T Tspec , V V V Vspec,   and l v x . (7.159) 

With the elimination of the liquid flows and V V Vspec , Eq. (7.158) is reduced to the 
unconstrained minimisation problem  

min , , , ,A T V V V v x vspec specc h  (7.160) 

with V  and v  as the chosen independent variables. Equation (7.160) satisfies the equilibrium 
conditions at its minimum since the derivatives of A with respect to the independent variables 
(i.e. the gradient vector) are given by 

A
V

p p    and A
vi

i i , i = 1, 2, ..., N. (7.161) 
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7.9.3 Solution to Other Flash Specifications Using Volume-Based 
Variables

Q-functions for the remaining specifications (see Table 5.4) with the Helmholtz free energy as 
the core function, i.e. based on temperature, total volume, and composition as the independent 
variables, can be formulated similar to Eq. (7.151) as outlined by Michelsen (1999). 
Table 7.15 summarises such Q-functions corresponding to the different flash specifications 
listed in Table 5.4 using A or G as the core functions. Note that only for the specifications of 
T and p, and of T and V, the solution corresponds to a minimum of Q.

Table 7.15 Q-functions for state function based specifications 

Specification Q-function using A Q-function using G

p, T, n A p Vspec G

p, H, n A p V H Tspec specb g G H Tspecb g
p, S, n A T S p Vspec spec G T Sspec

T, V, n A G pVspec

U, V, n A U Tspecb g G U pV Tspec specb g
S, V, n A T Sspec G T S pVspec spec

For those Q-functions where the solution does not correspond to a minimum of Q (but to a 
saddle point), Michelsen (1999) presented a formal framework using G as the core function 
which enables the formulation of the phase equilibrium problems as unconstrained 
maximisation problems, combined with an inner loop minimisation of the Gibbs free energy 
at the current T and p, i.e. an inner loop pT flash calculation. As an alternative, a Newton-
Raphson based approach, capable of handling all of the specifications listed in Table 7.15 
with a common Jacobian matrix, was derived for G enabling the simultaneous convergence of 
all independent variables (with presumed good initial estimates available).  

With regard to modern mixture models based on multi-fluid approximations explicit in the 
reduced Helmholtz free energy, and aside from the Gibbs free energy based approaches, the 
development of similar procedures using the Helmholtz free energy as the core function 
seems to be worthwhile to solve all of the above listed calculation problems. The basis for 
such formulations are derivatives of ln i, ln f ni ia f, or i  with respect to the independent 
variables. These were derived from  by means of the systematic approach presented in 
Sec. 7.3. The interesting part of the development of Helmholtz free energy based flash 
algorithms concerning multi-fluid mixture models seems to be the influence of the special 
characteristics of  on the minimisation process and how false solutions, which might result 
from this, can be avoided by a proper solution strategy. 

7.9   Minimisation (or Maximisation) of ... Flash Formulations 
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7.10 Development of the Different Binary Equations of State of the 
New Mixture Model 

The new equation of state for the thermodynamic properties of natural gases, similar gases, 
and other mixtures, Eqs. (7.1) – (7.10), describes multi-component mixtures based only on 
formulations developed for the binary mixtures of the components in the model. Figure 7.14 
gives an overview of the 153 binary combinations that result from the 18 natural gas 
components studied in this work (see Table 4.2). This figure shows that most of the binary 
systems are taken into account by only using adjusted reducing functions for density and 
temperature [see Eqs. (7.9) and (7.10)]. The binary mixtures for which in addition binary 
specific departure functions or a generalised departure function were developed are listed 
separately in Table 7.16. Binary mixtures characterised by poor data, neither allowing for the 
development of a departure function nor the fitting of the parameters of the reducing 
functions, are taken into account by setting the parameters of the reducing functions to unity 
or using linear combining rules (instead of the combining rules of Lorentz and Berthelot) for 
the critical parameters of the respective pure components as described in Sec. 5.2. The linear 
combining rules are used for binary mixtures composed of secondary alkanes, and for binary 
mixtures consisting of secondary alkanes and either hydrogen or carbon monoxide as the 
second component as displayed in Fig. 7.14. The remaining subsystems again characterised 
by poor data are taken into account by using the combining rules of Lorentz and Berthelot 
(which is the default when setting the parameters of the reducing functions to unity). The use 
of different combining rules is immaterial when data are used to adjust the binary parameters 
of the reducing functions (see Sec. 5.2).

For the binary mixtures consisting of methane with the primary natural gas components 
nitrogen, carbon dioxide, ethane, and propane, as well as for the binary systems methane–
hydrogen, nitrogen–carbon dioxide, and nitrogen–ethane, the data situation is quite 
satisfactory (see also Table 6.4) and binary specific departure functions were developed. The 
most accurate (and also most extensive) data sets available are those for the binary mixtures 
methane–nitrogen and methane–ethane. The binary equations developed for these systems 
have a strong influence on the description of the thermodynamic properties of natural gases 
and similar multi-component mixtures, and they reproduce the available data to within the 
very low experimental uncertainties of the most accurate measurements (see Table 6.2 and 
also Sec. 8.1). In order to develop a mixture model which is able to accurately describe the 
properties of a variety of natural gases (of typical and unusual composition), a generalised 
departure function was developed for binary mixtures of important secondary alkanes. The 
data for these mixtures do not allow for the development of binary specific departure 
functions. For the development of the generalised departure function for secondary alkanes, 
selected data for the well-measured binary alkane mixtures methane–ethane and methane–
propane were also used.
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Table 7.16 List of the binary mixtures taken into account by the binary specific departure functions 
and the generalised departure function for secondary alkanes developed in this work 

Binary mixture Type of departure function Number  Type of termsa

  of terms  

Methane–Nitrogen binary specific 9 P (2), E (7) 
Methane–Carbon dioxide binary specific 6 P (3), E (3) 
Methane–Ethane binary specific 12 P (2), E (10) 
Methane–Propane binary specific 9 P (5), E (4) 
Methane–n-Butane generalised 10 P 
Methane–Isobutane generalised 10 P 
Methane–Hydrogen binary specific 4 P 
Nitrogen–Carbon dioxide binary specific 6 P (2), E (4) 
Nitrogen–Ethane binary specific 6 P (3), E (3) 
Ethane–Propane generalised 10 P 
Ethane–n-Butane generalised 10 P 
Ethane–Isobutane generalised 10 P 
Propane–n-Butane generalised 10 P 
Propane–Isobutane generalised 10 P 
n-Butane–Isobutane generalised 10 P 
a ”P” indicates polynomial terms according to Eq. (4.24), and “E” indicates the new exponential terms 

composed of a polynomial and the modified exponential expression according to Eq. (7.163). The 
numbers in parentheses indicate the respective number of terms. 

The development of the various binary equations is based on the binary data for the thermal 
and caloric properties presented in Sec. 6.1. In the first step, the binary parameters of the 
reducing functions for density and temperature were fitted to selected data. Subsequently, 
departure functions consisting of 4 to 12 individual terms were developed. For the 
optimisation of the structure of the departure functions, linearised data were used as required 
by the linear optimisation procedure (see Sec. 4.4.2). The data sets used for fitting and 
structure optimisation are indicated as “used data” in Table A2.1 of the appendix. All other 
data were used for comparisons only. 

The development of departure functions involves considerable but worthwhile effort. The 
pursued basic strategy for this development is described in the following. Details concerning 
the development of a new functional form and the different banks of terms used for the 
development of the different binary departure functions are given in Sec. 7.11.

7.10.1 Fitting of the Reducing Functions for Density and Temperature 

For all of the considered binary mixtures, the parameters of the reducing functions in 
Eqs. (7.9) and (7.10) were firstly adjusted without the use of a departure function. The fitting 
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of the parameters to the different linear and nonlinear data types was, in general, performed 
using nonlinear fitting procedures as described in Sec. 5.5. For phase equilibrium properties, 
linearised VLE data were used in the initial cycles of the iterative fitting process (see 
Sec. 5.5.3). Subsequently, direct (nonlinear) fitting to VLE data was applied as described in 
Sec. 5.5.4. Since the reducing functions only depend on the mixture composition, the use of 
VLE data which uniformly cover large composition ranges proved to be advantageous.

Since a multi-fluid approximation without a departure function is in general not able to 
reproduce the most accurate data to within their (low) experimental uncertainties, e.g. gas 
phase densities and gas phase speeds of sound at low temperatures and elevated pressures 
measured using state-of-the-art measuring techniques (see Chap. 6), the data were weighted in 
a reasonable manner (with comparatively low weights). With this, the limited abilities of a 
simple multi-fluid approximation based only on adjusted reducing functions for the 
description of thermodynamic properties were taken into account.

For the initial estimates, the binary parameters v ij, , v ij, , T ij, , and T ij,  of Eqs. (7.9) and 
(7.10) were set to unity. Thus, the reducing functions for density and temperature reduce to 
simple quadratic mixing rules using combining rules for the component critical parameters. In 
general, it is advantageous to retain the asymmetric binary parameters v ij,  and T ij,  in the 
initial fitting cycles, prior to the simultaneous fitting of all parameters to obtain the final set of 
coefficients.  

The data sets for several binary mixtures consisting of secondary and minor components are 
either limited with respect to the covered temperature, pressure, and composition ranges, or 
the number of available data (see Table 6.4). The development of equations for these systems 
was carried out carefully, and occasionally only the (symmetric) parameters v ij,  and T ij,

were fitted to the data in order to avoid unreasonable behaviour in regions not covered by 
data. Thus, the parameters v ij,  and T ij,  remain unity for these systems. 

7.10.2 Development of Binary Specific Departure Functions 

After the parameters of the reducing functions have been determined, the development of a 
departure function for a binary mixture using the structure optimisation method described in 
Sec. 4.4 can be performed. This optimisation procedure determines the structure of the part of 
the departure function which depends only on the reduced density  and the inverse reduced 
temperature . For the development of any equation for a binary mixture based on a multi-
fluid approximation, it is important to examine the ranges of the reduced mixture properties 
and  covered by the data (not the absolute temperature, pressure, and composition ranges)69

                                                
69  For instance, the reduced temperature T T/ /r 1  for a methane–nitrogen mixture containing 10% 

nitrogen amounts to about 1.20 at 220 K, whereas it approximately equals 1.25 for 20% nitrogen at 

7.10   Development of the Different Binary Equations of State... 
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in order to reasonably weight all data as desired for the range of most interest for the multi-
component mixture (see also Sec. 4.8).  

In order to consider nonlinear data for the homogeneous region (e.g. speed of sound data) in 
the linear structure optimisation procedure, the required precorrelation factors were calculated 
from a preliminary equation (see also Sec. 4.4.2). To meet the requirements for the 
description of phase equilibrium properties, linearised VLE data were considered in the 
optimisation process in addition to linear and linearised homogeneous properties. The often 
missing saturated phase densities of the selected pTxy-data were also calculated from a 
preliminary equation to provide complete equilibrium information. For this, the phase 
densities were calculated as described in Sec. 5.4.1 by solving the preliminary equation for 
the densities at the given (experimental) values of saturation temperature, vapour pressure, 
and phase compositions, rather than solving the equilibrium conditions from the equation. 
Thus, the values for the pTxy-data remain unchanged and are simply supplemented by the 
precorrelated phase densities.

The structure optimisation of the departure function was carried out based on the method of 
Setzmann and Wagner (1989) described in Sec. 4.4.2 using the linear and linearised mixture 
properties. The coefficients of the resulting structure-optimised equation were then 
redetermined form direct (nonlinear) fitting to the selected linear and nonlinear binary data. 
For direct fitting of vapour-liquid equilibrium properties, measured vapour pressures and 
vapour phase compositions at the given saturation temperature and liquid phase composition 
were usually used. Furthermore, data for saturated liquid densities at a given temperature and 
composition were additionally used when available. Due to the linearisation of the nonlinear 
binary data, the entire process of optimising the structure of a departure function is a recursive 
process. Therefore, the most recently determined departure function is used at each step to 
first relinearise the nonlinear data for both the homogeneous region and for phase equilibrium. 
Then the next linear structure optimisation begins. This iterative process, composed of the 
linearisation of the data, the linear structure optimisation, and the nonlinear fitting of the 
coefficients, is repeated until convergence is obtained. For certain binary mixtures, such as the 
binary systems methane–carbon dioxide and methane–ethane, it was advantageous to 
repeatedly determine the parameters of the reducing functions with subsequent fitting. This 
can be done separately or simultaneously together with the coefficients of the departure 
function. Using the iterative optimisation and fitting process as described above, a new 
departure function was finally determined based on the improved reducing functions. 

                                                                                                                                                        
the same temperature. For the methane–ethane mixture, however, a reduced temperature of about 
1.19 is obtained at 250 K and 15% ethane, and also at 270 K and 30% ethane.  
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7.10.3 Development of a Generalised Departure Function 

Because the data situation for binary mixtures consisting of alkanes is limited, binary specific 
departure functions can only be developed for the binary systems methane–ethane and 
methane–propane. Since methane is the dominant component in virtually all natural gases, it 
is necessary to account for at least the binary mixtures methane–n-butane and methane–
isobutane by using departure functions to obtain a sufficiently accurate description of the 
thermodynamic properties of natural gas mixtures. In order to achieve an accurate description 
for these and other binary alkane mixtures characterised by limited data, a generalised 
departure function for the eight binary alkane mixtures listed in Table 7.16 was developed. 
Data for the well-measured binary mixtures methane–ethane and methane–propane were used 
along with the limited data sets to develop an accurate description of binary alkane mixtures 
such as ethane–propane. 

The development of this generalised departure function was carried out in several steps. The 
starting point was the binary specific departure function for the methane–ethane system with 
the respective reducing functions for density and temperature. The binary mixture methane–
propane was then considered as additional system. Selected data for this mixture and the 
initial binary specific departure function for methane–ethane were used to fit the binary 
parameters of the reducing functions and the binary specific parameter Fij  according to 
Eq. (7.3) for the methane–propane mixture. This produced reducing functions and a parameter 
Fij  that result in a reasonable description of the properties of the system methane–propane 
using the structure of the departure function determined for the methane–ethane mixture. 
Then, the selected data for both binary mixtures were used to develop a departure function (at 
fixed reducing functions and Fij  parameters) that best describes the properties of both 
mixtures using a simultaneously determined single structure. Similar to the development of 
the binary specific departure functions described in the previous section, the basic iterative 
procedure of the linearisation of the data, the linear optimisation of the structure of the 
departure function, and the subsequent nonlinear fitting of its coefficients to the selected 
linear and nonlinear data were carried out. In between this iterative process, the parameters of 
the reducing functions and the Fij  parameters of both binary mixtures were refitted to obtain 
reducing functions which are best suited for the description of the thermodynamic properties 
of binary mixtures with the generalised departure function. After the whole process of 
developing the generalised departure function for the binary mixtures methane–ethane and 
methane–propane converged satisfyingly, additional binary mixtures were added in a similar 
manner to that for the methane–propane mixture, beginning with the system methane–
n-butane. In intermediate optimisation steps, selected data for the binary systems ethane–
propane and propane–n-butane were also used, although they have only a minor influence on 
the structure of the equation due to their limited data (this is also true for the other secondary 
alkane mixtures).  

7.10   Development of the Different Binary Equations of State... 
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The final structure of the generalised departure function for secondary binary alkane mixtures 
is almost completely based on the accurate and comprehensive data sets for the three binary 
systems methane–ethane, methane–propane, and methane–n-butane, with more than 6,200 
selected data points used. For additional binary alkane mixtures, the parameters of the 
reducing functions and the Fij  parameter of each binary equation were fitted to selected data 
for the binary mixture using the final generalised departure function. Thus, the data for these 
binary mixtures did not contribute in the optimisation of the structure of the generalised 
departure function.

7.11 Development of New Terms and the Different Banks of Terms 

As described in Sec. 5.3.4, two different types of terms, namely the polynomial terms and 
polynomial terms in combination with exponential terms (for simplicity, referred to in the 
following as exponential terms) according to Eqs. (4.24) and (4.25), form the structure of the 
departure functions used in the multi-fluid mixture models reported in the literature (see 
Table 5.2). The departure functions developed by Klimeck (2000) for selected binary 
mixtures of seven main and secondary natural gas components are composed of both 
functional forms [see Eq. (5.24)], and these forms are the basis of many formulations for the 
residual Helmholtz free energy of modern wide-range pure substance equations of state. The 
bank of terms used initially in this study is very similar to the one used for optimising the 
structure of the new class of pure substance equations of state for the main natural gas 
components developed by Klimeck (2000) (see Sec. 4.8). Although the resulting binary 
equations achieved a very accurate description of the thermal and caloric properties of binary 
and multi-component mixtures, physically wrong behaviour in vapour-liquid equilibrium 
properties, indicated by “bumps” in the vapour-liquid phase boundary of binary mixtures (see 
Figs. 7.16 – 7.18), was observed after finishing the development of the binary equations. In 
this section the solution to the problem of the appearance of the bumps in the phase boundary 
is described.

The results of the extensive investigations concerning the bumps in the phase boundary 
carried out in this work can be summarised as follows: 

The undesirable bumps appeared in every binary equation developed by Klimeck (2000) 
which used a departure function to accurately describe the thermal and caloric properties of 
binary mixtures. Thus, the problem existed in all of the 14 binary equations containing a 
binary specific (six binary mixtures) or a generalised departure function (eight binary 
mixtures).  

The bumps are not due to the special characteristics (i.e. the multiple loops described in 
Sec. 7.8) of the multi-parameter equations of state used for the pure components.  
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Potential errors in the density solver or the fitting and structure optimisation routines were 
excluded by verifying the computer code.  

The bumps are associated with the use of exponential expressions in the departure 
functions. The appearance of the bumps is even more likely when using values for density 
exponents cij k, 3  in the argument of the exponential expression [see Eq. (7.162)]. 
Equations developed without a departure function or departure functions that consist of 
only polynomial terms do not show any wrong physical behaviour.

The use of exponential terms (including those with cij k, 3) in the departure function of 
binary mixtures is necessary to be able to represent the available accurate speed of sound 
data to within their (usually very low) experimental uncertainty. Without these exponential 
expressions (i.e. using a structure consisting of only polynomial terms), the description of 
the speed of sound data of binary mixtures and also of natural gases at lower temperatures 
is less accurate (and not within the experimental uncertainty of the data).  

Aside from the low quality of most VLE data (see Chap. 6), additional difficulties arise 
because of the lack of data for vapour-liquid equilibrium properties particularly in the 
mixture critical region and the poor data for thermal and caloric properties in the 
homogeneous region close to the mixture critical region. This contributes to the wrong 
physical behaviour since the structure of a departure function using exponential 
expressions with density exponents cij k,  up to 6 is far too flexible for use in a multi-fluid 
mixture model.  

The use of artificial VLE data calculated from equations that are developed only for phase 
equilibrium, providing a more consistent and extensive data set, usually complicates the 
development of departure functions for binary mixtures. Such an approach is not 
recommended and often adversely effects the description of the available thermal and 
caloric properties in the homogeneous region.  

7.11.1 Development of a New Functional Form 

The solution to this problem was the development of a new functional form, suitable for the 
structure of the departure functions of binary mixtures, that replaced the ordinary exponential 
terms. Although this solution appears to be fairly reasonable, its realisation is not a trivial 
task. Furthermore, the investigations of the bumps in the phase boundary revealed that the 
new binary equations had to achieve at least the same accurate description of the thermal and 
caloric properties of binary mixtures in the homogeneous region as compared to those 
developed by Klimeck (2000) in order to meet the requirements on the new mixture model 
concerning the accuracy in the description of the thermodynamic properties of natural gases 
(see Chap. 3).  

7.11   Development of New Terms and the Different Banks of Terms 
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In the beginning of the departure function development, different modifications of the 
ordinary exponential term

ij k ij k
d tn eij k ij k

cij k
, ,

, , ,r , (7.162) 

such as terms using the inverse reduced mixture temperature  in the argument of the 
exponential function instead of , or combinations of exponential functions depending on 
both  and , were used for selected binary mixtures. Further theoretical considerations 
resulted in rather unusual functional forms such as an integrated exponential term for which 
the first derivative with respect to  equals Eq. (7.162). Furthermore, formulations using an 
inverse tangent function in  instead of the exponential expression were tested. Each of these 
tests required full implementation of the functional form into the structure optimisation and 
fitting routines, and the property calculation programs as well. Nevertheless, either the 
modified equations showed similar or even worse behaviour (e.g. with the combined 
exponential functions in  and ) than with the ordinary exponential functions, or the 
equations did not achieve the required high accuracy in the description of the thermal and 
caloric properties of binary (and consequently of multi-component) mixtures.  

As mentioned before, extensive investigations showed that certain characteristics of the 
ordinary exponential terms are particularly useful for the accurate description of speed of 
sound data in the gas phase at lower temperatures. Therefore, a functional form was finally 
designed which uses a modified exponential expression for the reduced mixture density . As 
shown in Sec. 5.3.4 [see Eq. (5.25)], the resulting new exponential term can be written as  

ij k ij k
d tn eij k ij k ij k ij k ij k ij k

, ,
, , , , , ,r c h c h2

, (7.163) 

where ij k, , ij k, , ij k, , and ij k,  are adjustable parameters. Together with the density 
exponent dij k, , the parameters are used to (manually) model certain shapes of the departure 
function with respect to . A plot of such different shapes is displayed in Fig. 7.15. The 
parameters are chosen in such a way that the maximum of the term is located between values 
for the reduced mixture density  of 0.5 and 1. Furthermore, the parameters are used to 
control the gradients of the term on both sides of the maximum (usually, the gradient of an 
ordinary exponential term is too steep on both sides of the maximum). By limiting the 
structure optimisation procedure to use certain predefined exponential terms reduces the 
flexibility of the structure of the departure function to be developed, even though the 
exponential characteristic required for the accurate description of speed of sound data is 
maintained.  

The new functional form should not be confused with the modified Gaussian bell-shaped 
terms introduced by Setzmann and Wagner (1991) for the improved description of the thermal 
and caloric properties of pure substances in the vicinity of the critical point. These terms are 
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currently used in the bank of terms for the r  equation of highly accurate equations of state 
for pure substances (see Sec. 4.6) and have the following structure: 

k k
d tn ek k k k k kr a f a f2 2

. (7.164) 

Similar to the new functional form, the adjustable parameters k , k , k , and k  are not 
automatically determined in the optimisation and nonlinear fitting process, but based on 
comprehensive precalculations. The influence of these terms (in normal use) on the 
description of thermodynamic properties is, however, limited to a somewhat narrow range in 
the critical region, whereas the new term behaves similar to an ordinary exponential term with 
density exponents cij k,  of 1 and 2.  

Fig. 7.15 Different shapes of the new term given by Eq. (7.163) for selected values of the density 
exponent dij k,  and the parameters ij k, , ij k, , ij k, , and ij k, ; the shape of an ordinary 
exponential term given by Eq. (7.162) is plotted for comparison. 

The new functional form enables the description of the thermodynamic properties of binary 
mixtures in the homogeneous gas, liquid, and supercritical regions with the same high 
accuracy as with the ordinary exponential form, while demonstrating physically correct 
behaviour along the phase boundary. Equations developed using the new terms in the right 
way show no bumps and are as accurate or even more accurate than the equations developed 
by Klimeck (2000), especially for the accurate speed of sound measurements at lower 
temperatures. Furthermore, the equations developed using the new terms show better 
behaviour with regards to the composition dependence in the description of binary mixture  

7.11   Development of New Terms and the Different Banks of Terms 
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data. Reducing the step size of the temperature exponent tij k,  from 0.125 to 0.050 in the bank 
of terms significantly improved the quality of the equations and the convergence behaviour of 
the iterative structure optimisation process. A drawback of such a reduction is the large 
amount of terms that have to be handled by the structure optimisation procedure and the 
resulting increase in computing time. The banks of terms used to develop the different binary 
equations consisted of up to 1,612 terms. 

Fig. 7.16 Pressure-composition diagram for the methane–ethane binary mixture showing the vapour-
liquid phase boundaries at temperatures ranging from 172 K to 295 K as calculated from 
the new equation of state (GERG-2004), Eqs. (7.1) – (7.10), and the mixture model of 
Klimeck (2000); the experimental data for the binary mixture are plotted for comparison. 

As an example, Fig. 7.16 shows a pressure-composition diagram for the binary mixture 
methane–ethane at temperatures ranging from 172 K to 295 K. The solid lines represent the 
bubble and dew point lines calculated from the new equation of state developed using the new 
exponential terms according to Eq. (7.163). The red color lines correspond to the bubble and 
dew point lines calculated from the equation of state of Klimeck (2000) developed using the 
ordinary exponential terms according to Eq. (7.162). Both equations of state describe the 
accurate vapour pressure data of Wichterle and Kobayashi (1972a), Davalos et al. (1976), and 
Wei et al. (1995) with deviations of less than (1 – 3)%, which is in agreement with the 
experimental uncertainty of the data. The equation of Klimeck (2000) shows the characteristic 
“bumps” for the isotherms in the critical region of the mixture at elevated pressures, whereas  
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the new equation of state developed in this work shows physically correct behaviour. More 
obvious unphysical behaviour in the equation of state of Klimeck (2000) occurs for the 
pressure-composition diagram of the binary mixture methane–carbon dioxide displayed in 
Fig. 7.17, or the density-composition diagram of the methane–n-butane mixture shown in 
Fig. 7.18. The use of ordinary exponential terms results in a completely wrong description of 
the phase boundary of the methane–carbon dioxide mixture at elevated pressures over wide 
ranges of temperature, exemplified in Fig. 7.17 by the two isotherms at 230 K and 293 K, 
whereas Fig. 7.18 displays the characteristic “bumps” obtained at higher temperatures in the 
critical region of the methane–n-butane mixture resulting from the use of ordinary exponential 
terms in the generalised departure function developed by Klimeck (2000) for secondary 
alkanes. For both examples, however, the new equation of state shows physically correct 
behaviour on the phase boundary.

Fig. 7.17 Pressure-composition diagram for the methane–carbon dioxide binary mixture showing the 
vapour-liquid phase boundaries at temperatures ranging from 220 K to 301 K as calculated 
from the new equation of state (GERG-2004), Eqs. (7.1) – (7.10), and the mixture model of 
Klimeck (2000); the experimental data for the binary mixture are plotted for comparison. 

The development of departure functions for binary mixtures based on the new functional form 
is associated with considerable additional effort since the phase behaviour has to be analysed 
over the whole mixture critical region for the selected bank of terms. However, in this way, 
departure functions for binary mixtures can be developed which allow for a very accurate  

7.11   Development of New Terms and the Different Banks of Terms 



178 7   The New Equation of State (GERG-2004)

description of the thermal and caloric properties of binary mixtures along with an accurate 
and physically reasonable description of the mixture phase behaviour (even in regions 
characterised by poor data). 

Fig. 7.18 Density-composition diagram for the methane–n-butane binary mixture showing the 
vapour-liquid phase boundaries at temperatures ranging from 250 K to 412 K as calculated 
from the new equation of state (GERG-2004), Eqs. (7.1) – (7.10), and the mixture model of 
Klimeck (2000). 

7.11.2 The Different Banks of Terms 

Based on the ordinary polynomial terms and the new mixture term, binary specific  
departure functions were developed for the binary mixtures methane–nitrogen, methane–
carbon dioxide, methane–ethane, methane–propane, nitrogen–carbon dioxide, and nitrogen–
ethane as described in Sec. 7.10.2 (see also Table 7.16). Different banks of terms were used 
for the different types of mixtures. A general formulation of these banks of terms can be 
expressed as follows: 

ij kl
k l

lk
kl

d l

lk

K

n n eij k ij k ij k ij k ij k
ij

r / /, , , , ,20
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80

1

4
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2c h c h , (7.165) 

where Kij  is the maximum number of new terms used. The parameters dij k, , ij k, , ij k, , ij k, ,
and ij k,  are listed in Table 7.17, representing the parameter sets which yield the most suitable 
functional form for each binary mixture resulting from comprehensive tests concerning 
various parameter combinations.  
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Table 7.17 Parameters of the new exponential terms according to Eq. (7.163) contained in the 
different banks of terms, Eq. (7.165), for the respective binary mixtures 

k dij k, ij k, ij k, ij k, ij k,

CH4–N2, CH4–CO2, CH4–C2H6, N2–C2H6

1 1 1.000 0.500 1.000 0.500 
2 2 1.000 0.500 1.000 0.500 
3 2 0.875 0.500 1.250 0.500 
4 2 0.750 0.500 1.500 0.500 
5 2 0.500 0.500 2.000 0.500 
6 2 0.250 0.500 2.500 0.500 
7 2 0.000 0.500 3.000 0.500 
8 3 0.000 0.500 3.000 0.500 

CH4–C3H8

1 1 0.250 0.500 0.750 0.500 
2 1 0.250 0.500 1.000 0.500 
3 1 0.000 0.500 2.000 0.500 
4 2 0.000 0.500 2.000 0.500 
5 2 0.000 0.500 3.000 0.500 
6 2 0.000 0.500 4.000 0.500 

N2–CO2

1 1 0.250 0.500 0.750 0.500 
2 1 0.125 0.500 0.875 0.500 
3 1 0.250 0.500 1.000 0.500 
4 1 0.000 0.500 2.000 0.500 
5 2 0.000 0.500 2.000 0.500 
6 2 0.000 0.500 3.000 0.500 
7 2 0.000 0.500 4.000 0.500 

The data situation for the methane–hydrogen mixture does not require the use of functional 
forms which exhibit an exponential behaviour. Therefore, the following bank of terms 
consisting only of polynomial terms was used: 

ij kl
k l

lk
nr /20

20
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4
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The use of the new functional forms for the development of the generalised departure function 
for secondary alkanes was also investigated. As the data situation for the secondary alkane 
mixtures does not require the use of the new terms, and in order to be able to extend the 
generalised formulation to further binary alkane mixtures, it was decided to use a formulation 
which consisted of only polynomial terms. The corresponding bank of terms used to develop 
the final generalised equation can be written as 

7.11   Development of New Terms and the Different Banks of Terms 
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ij kl
k l
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nr /20
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. (7.167) 

7.12 The Alternative (Invariant) Equation of State 

To investigate the problem of invariance (see Sec. 5.2.1) and the predictive capabilities of a 
mixture model that uses invariant reducing functions for the description of the thermodynamic 
properties of multi-component mixtures, an alternative equation of state based on the multi-
fluid mixture model presented in Sec. 7.1 was developed using the invariant reducing 
functions described below.

7.12.1 The Invariant Reducing Functions 

The alternative equation of state uses the invariant reducing functions for density and 
temperature that are based on a mixing rule suggested by Mathias et al. (1991) as described in 
Sec. 5.2.1 [see Eq. (5.18)]: 
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where the Lorentz-Berthelot combining rules according to Eqs. (5.14) and (5.15) are used for 
1 c,ij  and T ijc,  similar to that for Eqs. (7.9) and (7.10). Although the mathematical structure 
of Eqs. (7.168) and (7.169) appears to be comparatively complex, the reducing functions and 
their derivatives with respect to mole fractions listed in Table 7.18 can be coded very 
efficiently (only requiring about N2 2  loops for the calculation of r  and Tr  and their mole 
fraction derivatives at a given mixture composition).  

Similar to Eqs. (7.9) and (7.10), two adjustable parameters are used each of the invariant 
formulations, namely v ij,  and v ij, , and T ij,  and T ij, . For the symmetric numbering of 
mole fractions  

v ij v ji, , , T ij T ji, , , v ij v ji, , ,   and T ij T ji, , , (7.170) 

and for j = i v ii T ii, , 1 and v ii T ii, , 0 . Equations (7.168) and (7.169) reduce to 
simple quadratic mixing rules when v ij T ij, , 1 and v ij T ij, , 0 , with the respective 
combining rules according to Eqs. (5.14) and (5.15) for the critical parameters of the pure 
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components. Furthermore, for binary mixtures (i.e. N = 2), Eqs. (7.168) and (7.169) reduce to 
a much more simple form given by  

Y x x x x Yi j Y ij j Y ij ij
j

N

i

N

r c( ) , , ,c h
11

, (7.171) 

where Y corresponds to either the molar volume v or the temperature T. The mathematical 
structure of the formulation according to Eq. (7.171) was originally suggested by 
Panagiotopoulos and Reid (1986) for a mixing rule for the parameter a of cubic equations of 
state [see, for example, Eq. (2.3)] to improve the description of the VLE properties of strongly 
polar, asymmetric mixtures. Unlike that for Eqs. (7.168) and (7.169), the invariance condition 
(see Sec. 5.2.1) is, however, not fulfilled for the reducing functions according to Eq. (7.171).  

Table 7.18 The invariant reducing functions for mixture density 1 r ( )x  and temperature T xr ( ) 
and their derivatives with respect to the mole fractions xi

Reducing function for density 1 r  (Y v) and temperature Tr  (Y T )a
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Y ij Y ji, ,  and Y ij Y ji, ,  for the symmetric numbering of mole fractions. 
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The two binary parameters  and  [ v ij,  and v ij,  in Eq. (7.168) and T ij,  and T ij,  in 
Eq. (7.169)] allow for arbitrary symmetric and asymmetric shapes of the invariant reducing 
functions concerning equimolar composition similar to  and  in Eqs. (7.9) and (7.10). 
Figure 7.19 exemplifies different shapes of the expression  

x x xi j ij j ijc h (7.172) 

plotted over mole fraction xi  of component i for selected values of the binary parameters ij

and ij . Comparisons of these with the different shapes plotted for the expression  

x x
x x

x xi j ij ij
i j

ij i j
2  (7.173) 

in Fig. 5.1 show a higher flexibility of the invariant reducing functions than Eqs. (7.9) and 
(7.10) since Eq. (7.172) allows for shapes that intersect the abscissa for 0 1xi  (see the 
curve plotted for ij 0 5.  and ij 0 75.  in Fig. 7.19).  

Fig. 7.19 Different symmetric and asymmetric shapes respecting equimolar composition of the 
invariant reducing functions used for the alternative mixture model for selected values of 
the binary parameters  and  in Eqs. (7.168) and (7.169). 

7.12.2 The Dilution Effect 

Aside from the invariance condition, the so-called “dilution” effect [see Michelsen and 
Kistenmacher (1990)] is an additional problem that affects the suitability of the mathematical 
structure of reducing functions for the extension from binary to multi-component mixtures. 
The terms in Eqs. (7.168), (7.169), and (7.171) with the binary parameter  included are 
calculated in a double summation, but contain products of more than two mole fractions, e.g. 
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x xi j
2  and x xi j

3 . This implies that as the number of components in the mixture increases, the 
influence of these terms becomes smaller or entirely vanishes. This deficiency to some extent 
concerns, for example, the calculation of properties of natural gases containing small amounts 
of secondary and minor components such as higher alkanes, which have a considerable 
influence on the real mixture behaviour, especially for VLE conditions. The effect increases 
with the exponent of the mole fractions and can be decreased by dividing these terms by 
x xi j . In this context it should be noted that the reducing functions according to Eqs. (7.9) 
and (7.10) do not suffer from this defect.  

7.12.3 Fitting the Binary Parameters of the Invariant Reducing Functions 

Instead of developing binary equations by fitting the adjustable binary parameters of the 
invariant reducing functions for density and temperature [Eqs. (7.168) and (7.169)] to 
experimental data for thermal and caloric properties for the respective binary mixtures as 
described in Sec. 7.10, the alternative mixture model was developed by substituting the 
reducing functions of the original mixture model and maintaining its optimised departure 
functions [see Eqs. (7.1) – (7.10)] by Eqs. (7.168) and (7.169). Therefore, the invariant 
reducing functions70 with their respective binary parameters  and  were directly fitted to 
values of r ( )x  and T xr ( )  calculated for several discrete mixture compositions from the 
original reducing functions developed using experimental data71. This procedure ensures that 
the invariant reducing functions result in (virtually) the same values for the reduced mixture 
variables  and  as obtained from the original formulations72. Hence, the binary equations of 
both mixture models behave in a nearly identical manner and achieve the same accuracy in 
the description of the thermal and caloric properties of the different binary mixtures. The 
difference in the description of multi-component mixtures then results purely from the 

                                                
70  Instead of fitting the adjustable parameters of Eqs. (7.168) and (7.169), those of the reduced 

formulations given in Eq. (7.171) were fitted. The simplification of Eqs. (7.168) and (7.169) to 
Eq. (7.171) for N = 2 enables the formation of another alternative (but not invariant) equation of 
state which behaves completely identical for binary mixtures, but different for multi-component 
systems.  

71  For the binary mixtures methane–nitrogen, methane–ethane, and methane–propane, equations based 
on the invariant reducing functions (and the binary specific departure functions previously 
optimised based on the original reducing functions) were developed by fitting the parameters of 
Eqs. (7.168) and (7.169) to experimental data for thermal and caloric properties of the respective 
binary mixtures. The binary equations developed in this way yield very similar results compared to 
those developed using Eqs. (7.9) and (7.10). Whether the apparently very flexible mathematical 
structure of the invariant reducing functions is advantageous or not for other binary systems or what 
the outcome is by starting the fitting and optimisation process from the beginning (without 
information from an existing departure function) still needs to be investigated.  

72  Fitting the binary parameters to experimental data might lead to noticeable deviations in the 
description of the properties of binary mixtures due to the different mathematical structures of the 
reducing functions. The degree of change in the description of the properties of multi-component 
mixtures caused by this additional influence would not be known without an isolated investigation 
of the predictive capabilities of an alternative mixture model using invariant reducing functions.  

7.12   The Alternative (Invariant) Equation of State 
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different mathematical structures of the respective reducing functions for the extension from 
binary to multi-component mixtures. In reality, the deviations between the reducing functions 
are in general negligible, and the differences in the description of multi-component mixtures 
can be attributed to the different structure of the reducing functions. A list of the parameters 
and  determined in this way is given in Table A4.1 of the appendix. Note that Y ij Y ij, ,

and Y ij, 0  if Y ij, 1, where Y corresponds to either v or T.

7.12.4 Results of the Investigations Concerning the Problem of Invariance 
and the Description of Thermodynamic Properties Using the 
Alternative Equation of State 

Whether the theoretical considerations concerning the structure of the reducing functions of 
the multi-fluid mixture model are of practical relevance or not was investigated in this work. 
As mentioned in Sec. 5.2.1, the invariance condition is neither fulfilled for the reducing 
functions used in the new mixture model [see Eqs. (7.9) and (7.10)] nor for those of other 
existing models based on multi-fluid approximations containing expressions to model 
asymmetric shapes respecting equimolar composition [e.g. Lemmon and Jacobsen (1999); see 
also Sec. 5.2]. Figure 7.20 shows that the violation of the invariance condition causes 
significant deviations in calculated mixture properties, exemplified here for the density, when 
dividing a component into several identical pseudo-components. The plot displays percentage 
density deviations calculated from the new mixture model [Eqs. (7.1) – (7.10)] and the one 
developed by Lemmon and Jacobsen (1999) for a mixture consisting of 95% of methane and 
5% of propane. The mixture is investigated in different ways, namely as a binary mixture and 
as a multi-component mixture consisting of several identical pseudo-components. The 
baseline of the deviation plot corresponds to the respective density values calculated for the 
binary mixture from the new mixture model and from the mixture model of Lemmon and 
Jacobsen (1999). For the multi-component mixture, the amount of methane was divided into 
four pseudo-components with concentrations of 80% for one of them, and 5% for the other 
three. The dashed and dot-dashed lines represent the deviations which occur for the 
calculations with the partitioned system. From a logical point of view, the equations of state 
should yield identical results without any deviations compared to the binary mixture 
calculations. The plotted deviations do not, however, verify this assumption. Density values 
calculated from the mixture model of Lemmon and Jacobsen (1999) deviate for the two types 
of mixtures by up to 0.2%, whereas the deviations calculated from the new mixture model are 
less than 0.04%, and thus less severe. Nevertheless, a deviation in density of 0.04% resulting 
from the violation of the invariance condition cannot be neglected when aiming for a targeted 
uncertainty of  0.1% (see Chap. 3). The magnitude of the resulting deviations 
between the considered binary mixture and the partitioned system basically depends on 
temperature, pressure (or density), the type of thermodynamic property, the number of 
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pseudo-components introduced, the way of partitioning a component into two or more 
identical pseudo-components, and the differences in the critical properties of the components. 
Note that no deviations occur for any partitioning when the alternative equation of state using 
the invariant reducing functions according to Eqs. (7.168) and (7.169) is applied.  

Fig. 7.20 Percentage density deviations 100 100/ ( ) /exp calc exp  resulting from the 
violation of the invariance condition of the asymmetric reducing functions used for mixture 
models based on a multi-fluid approximation. The baseline corresponds to the density 
values calculated from the respective equation for the original (binary) mixture, i.e. without 
dividing a component into several identical pseudo-components. 

Instead of dividing a mixture component into several identical pseudo-components (which is 
merely of academic interest), grouping of similar components (e.g. the heavy fraction of a 
hydrocarbon phase) to represent the mixture by a (smaller) number of discrete components 
can be regarded as the inverse of the partitioning described above. Clearly, with more 
components, their individual mole fractions become smaller, and different results are obtained 
(when the reducing functions do not fulfil the invariance condition). Since similar 
components in general do not behave identical, it is, however, difficult to ascertain whether 
the deviations between the properties of the original mixture and those of the grouped system 
result from the unfulfilled invariance condition or their different behaviour.  

Since the new mixture model was developed to describe the thermodynamic properties of 
mixtures based on a defined (and limited) number of distinct components, problems do not 
occur when the model is used in the way it was designed for, or, in other words, when 
components are distinct, the problem of invariance is not severe. Problems may exist when a 
description may vary, i.e. when a characterisation is used to describe several similar mixture 
components.  

Investigations concerning the description of the thermodynamic properties of multi-
component mixtures using the new mixture model and the alternative (invariant) equation of 
state revealed that the structure of the reducing functions is of considerable importance. To 
determine the differences in the quality of the two equations, their description of the 
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experimental data for thermal and caloric properties of natural gases and other mixtures 
presented in Chap. 6 was compared. The results can be summarised as follows: 

The alternative equation of state describes most of the available thermal and caloric 
properties of natural gases, similar gases, and other mixtures (see Sec. 6.2) in the 
homogeneous region very similar to the new mixture model (see Sec. 8.4). For instance, 
the majority of the available most accurate gas phase p T-data for natural gases and 
similar gases is described with density deviations of less than 0.1%, which is in 
agreement with the uncertainty of the data. Furthermore, no decisive differences were 
observed for the available saturated liquid densities. 

Aside from a differing description observed for the available p T-data of rich natural gases 
(containing comparatively large amounts of hydrocarbons from ethane to n-hexane), 
considerable differences were observed for natural gas mixtures rich in carbon dioxide. 
Here, the alternative equation of state deviates from the measured density data by more 
than 0.1% at lower temperatures. This weakness is very likely due to the structure of the 
invariant reducing functions, which seems to be less suited for certain types of mixtures. 

In addition, the alternative mixture model is less accurate in the description of dew point 
data for natural gases as exemplified by the pressure-temperature plot displayed in 
Fig. 7.21. In contrast to the new mixture model, the alternative equation of state using the 
invariant reducing functions according to Eqs. (7.168) and (7.169) considerably deviates 
from the measurements of Avila et al. (2002a) at elevated pressures. The deficiency of the 
invariant reducing functions concerning the previously described dilution effect might be 
responsible for the less accurate description since the 12-component mixture contains 
small amounts of the heavier alkanes n-heptane (0.014%) and n-octane (0.011%) (see also 
Table 7.14). Similar behaviour as shown in Fig. 7.21 is also observed for other mixtures. 

The results of the comprehensive comparisons prove that the reducing functions according to 
Eqs. (7.9) and (7.10) used in the new mixture model are of considerable advantage for the 
description of, for example, carbon dioxide rich natural gases and natural gas dew points. 
Their deficiency caused from the problem of invariance seems to be of minor importance and 
does not affect the accuracy in the description of the available data for the thermal and caloric 
properties of multi-component mixtures73. The investigations have shown that the differences 

                                                
73  Most of the natural gas mixtures listed in the GERG TM7 (see Chap. 6) under “N-file” (see also 

Tables A2.2 and A2.3 of the appendix) originally contained small amounts (less than 0.01% up to 
0.07%) of the minor components neopentane, benzene, and toluene, which are not included in the 
new mixture model. A few of those mixtures also contain a number of trace components, such as 
cyclopentane, cyclohexane, isohexane, and 1-butene, with amounts of in general less than 0.01%. 
The mole fractions of these components that were added to those of similar substances were in 
general considered in the new mixture model according to ISO 12213 [ISO (1997)]. Aside from 
these minor and trace components, a few mixtures contain considerable amounts of ethylene and 
propylene as additional components of up to 0.31% for ethylene and up to 0.37% for propylene. 
Whether the noticeable but minor differences in the description of the respective p T-data between 
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between the new mixture model and the alternative invariant version are small for most of the 
available data, except for a few mixtures. In reality, the new mixture model using the reducing 
functions according to Eqs. (7.9) and (7.10) is slightly advantageous concerning the 
temperature and pressure dependence of the percentage deviations. When a mixture contains 
considerable amounts of components that are not considered in the new mixture model, but 
are added to a similar existing component, the invariant version might yield more accurate 
results. Nevertheless, an extension of the new mixture model to incorporate these further 
components as distinct components is always preferable for a more accurate description of the 
mixture properties. The invariant reducing functions are, however, of interest when a multi-
fluid mixture model is developed using a varying characterisation. Potential modifications of 
the invariant reducing functions according to Eqs. (7.168) and (7.169) to reduce the influence 
of the dilution effect still need to be investigated as well as the development of binary 
equations based on fitting the adjustable parameters of the invariant reducing functions to 
experimental data. 

Fig. 7.21 Comparison of the vapour-liquid phase boundary of a 12-component synthetic natural gas 
as calculated from the new equation of state (GERG-2004), Eqs. (7.1) – (7.10), and the 
alternative (invariant) equation of state with the corresponding experimental (dew point) 
data measured by Avila et al. (2002a); for the mixture composition see Table 7.14. 

                                                                                                                                                        
the new mixture model and the alternative invariant version are due to the invariance problem or not 
remains to be investigated. Such an investigation would require the extension of the mixture model 
to, for example, ethylene or propylene as an additional component.  

7.12   The Alternative (Invariant) Equation of State 
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7.13 Range of Validity and Estimates of Uncertainty 

The new wide-range equation of state (GERG-2004), Eqs. (7.1) – (7.10), for natural gases, 
similar gases, and other (multi-component and binary) mixtures consisting of the 18 natural 
gas components listed in Table 4.2, is valid in the gas phase, in the liquid phase, for vapour-
liquid equilibrium, and in the supercritical region. The entire range of validity concerning the 
calculation of thermal and caloric properties of mixtures is divided into three different parts, 
namely the normal range, the extended range, and the range beyond the extended range. The 
conservatively estimated uncertainties for the different ranges of validity, as described below, 
are based on the representation of the available experimental data (see Chap. 6) of various 
thermodynamic properties of binary and multi-component mixtures by the new equation of 
state.

Due to the vast amount of experimental data for the different binary and multi-component 
mixtures, and the varying real mixture behaviour, which strongly depends on temperature, 
pressure, and composition, it is impossible to discuss each of the different binary and multi-
component systems separately at this point. Therefore, only the most important statements on 
both the range of validity and estimated uncertainties of the new equation of state are given in 
this section. The given statements are focussed on the use of the equation in standard and 
advanced technical applications using natural gases and similar mixtures. In general, there are 
no restrictions concerning the composition range of binary and multi-component mixtures. 
But, since the estimated uncertainty of the new equation of state is based on the experimental 
data used for the development and evaluation of the equation, the uncertainty is mostly 
unknown for the composition ranges not covered by the data. The data situation only allows 
for a well-founded uncertainty estimation for selected properties and parts of the fluid surface. 

Further details and comparisons of the new mixture model with selected experimental data 
and other equations of state are the subject of Chap. 8. A detailed statistical analysis using all 
of the available data presented in Chap. 6 is given in the appendix (see Tables A2.1, A2.2, and 
A2.4).

7.13.1 The Normal Range of Validity 

The normal range of validity covers temperatures of 90 K T  450 K and pressures of 
p  35 MPa. This range corresponds to the use of the equation in both standard and advanced 
technical applications using natural gases and similar mixtures, e.g. pipeline transport, natural 
gas storage, and improved processes with liquefied natural gas (see also Chap. 3). 

The uncertainty of the equation in gas phase density is less than 0.1% in density over the 
temperature range from 250 K to 450 K at pressures up to 35 MPa. This uncertainty estimate 
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is valid for various types of natural gases74, including, for example, natural gases rich in 
nitrogen, rich in carbon dioxide, rich in ethane, rich in hydrogen (natural gas–hydrogen 
mixtures), and natural gases containing comparatively high or considerable amounts of 
propane and heavier alkanes, carbon monoxide, or oxygen, as well as for many other mixtures 
(e.g. coke-oven gases) consisting of the 18 natural gas components covered by the new 
equation of state. The great majority of experimental densities for various rich natural gases, 
containing comparatively large amounts of carbon dioxide (up to 20%), ethane (up to 18%), 
propane (up to 14%), n-butane (up to 6%), n-pentane (0.5%), and n-hexane (0.2%), are 
reproduced by the new equation of state to within (0.1 – 0.3)% over the measured 
temperature (280 K to 350 K) and pressure ranges (up to 30 MPa). For rich natural gases with 
carbon dioxide mole fractions of 14% and more, systematic deviations exceeding 0.3% are 
observed (see also Sec. 8.4.1). 

The uncertainty in gas phase speeds of sound of common natural gases and similar gases is 
less than 0.1% in the temperature range from 270 K to 450 K at pressures up to 20 MPa, and 
in the temperature range from 250 K to 270 K at pressures up to 12 MPa. At higher pressures, 
the data situation does not, in general, allow for a well-founded uncertainty estimation for 
multi-component as well as binary mixtures. Therefore, an increased uncertainty of less than 
(0.2 – 0.3)% is assumed at higher pressures. The uncertainty in speed of sound for some 
important binary mixtures, such as methane–nitrogen and methane–ethane, amounts to less 
than (0.05 – 0.1)% over wide temperature, pressure, and composition ranges down to 
temperatures of 220 K (and below) and at pressures up to 30 MPa (e.g. for the methane–
nitrogen system). Furthermore, the new equation represents accurate data for isobaric 
enthalpy differences of binary and multi-component mixtures to within their experimental 
uncertainty, which is less than (0.2 – 0.5)%.  

Measured isobaric and isochoric heat capacities in the homogeneous gas, liquid, and 
supercritical regions for binary and multi-component mixtures are accurately described by the 
new model to within (1 – 2)%, which is in agreement with the experimental uncertainty of 
the available data. Experimental liquid phase isobaric enthalpy differences are represented to 
within (0.5 – 1)%. 

In the liquid phase of many binary and multi-component mixtures, including LNG-like 
mixtures and mixtures of light or heavier hydrocarbons, the uncertainty of the equation in 
density amounts to approximately (0.1 – 0.5)% at pressures up to 40 MPa, which is in 
agreement with the experimental uncertainty. A similar uncertainty is estimated for saturated 
liquid densities of different binary and multi-component LNG-like mixtures in the 
temperature range from 100 K to 140 K, which is of considerable importance for processes 
with liquefied natural gas. In this temperature range, comparisons with experimental liquid 

                                                
74  This applies to almost every natural gas mixture included in the GERG TM7 (see Sec. 6.2). 
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phase and saturated liquid densities show that the uncertainty is less than (0.1 – 0.3)% for 
many mixtures. 

The pTxy relation of binary and multi-component mixtures as well as the dew points of 
natural gases and hydrocarbon mixtures are accurately described as well. The most accurate 
vapour pressure data for binary and ternary mixtures, consisting of the natural gas main 
components (see Table 4.2), as well as propane, n-butane, and isobutane, are reproduced by 
the equation to within their experimental uncertainty, which is approximately (1 – 3)% (see 
also Table 6.2). Certain other mixtures have higher uncertainties of up to 5% (or more). This 
is due to the poor data situation. The comparatively high experimental uncertainty of the data 
only allows for a representation of the vapour-liquid equilibrium with reasonable accuracy. In 
this context, it should be again noted that the phase behaviour of many mixtures is 
considerably sensitive to errors in the mixture composition. The poor data situation requires a 
very careful assessment of the data and their representation by equations of state. Accurate 
experimental vapour phase compositions are described to within (0.5 – 1) mole-%, which is 
well within the uncertainty of the measurements.  

7.13.2 The Extended Range of Validity and the Calculation of Properties 
Beyond this Range 

The extended range of validity covers temperatures of 60 K T  700 K and pressures of 
p  70 MPa. The uncertainty of the equation in gas phase density at temperatures and 
pressures outside the normal range of validity is roughly estimated to be (0.2 – 0.5)%. For 
certain mixtures, the extended range of validity covers temperatures of T  700 K and 
pressures of p  70 MPa. For example, the equation accurately describes gas phase density 
data of air to within (0.1 – 0.2)% at temperatures up to 900 K and pressures up to 90 MPa. 
The present data situation outside the normal range of validity does not, in general, allow for 
well-founded estimates of uncertainty concerning other thermodynamic properties (see 
Tables A2.1, A2.2, and A2.4 for further details respecting the description of different 
properties for individual mixtures). 

When larger uncertainties are acceptable, tests have shown that the equation can be 
reasonably used outside the extended range of validity. For example, density data (frequently 
of questionable and low accuracy outside the extended range of validity) of certain binary 
mixtures are described to within (0.5 – 1)% at pressures up to 100 MPa and more. 

7.13.3 Some General Statements on the Uncertainty in Calculated 
Properties for Binary Mixtures 

The new mixture model basically allows for the calculation of thermodynamic properties of a 
total of 153 binary mixtures of arbitrary composition. These binary systems strongly differ in 
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their real mixture behaviour and the quality and extent of the available experimental data (see 
Table 6.4). Therefore, it is not possible to give individual statements on the uncertainty in the 
description of the thermodynamic properties for each of the binary mixtures at this point. To 
provide at least some general statements on the uncertainty of the new equation of state in the 
description of the different binary mixtures, the classifications according to Table 7.19 are 
made. Firstly, the quality in the calculation of thermodynamic properties can be distinguished 
according to the criterion of whether a departure function (binary specific or generalised) was 
developed, only the reducing functions were adjusted, or different combining rules were used 
(without fitting the parameters of the reducing functions) to take into account the respective 
binary system (see also Fig. 7.14). The second classification concerns the description of 
several thermodynamic properties for the different fluid regions.

Table 7.19 Conservative estimates of the uncertainty of the new equation of state (GERG-2004), 
Eqs. (7.1) – (7.10), in the description of selected thermal and caloric propertiesa of 
different binary mixtures by using adjusted reducing functions and a binary specific 
departure function, adjusted reducing functions and a generalised departure function, or 
only adjusted reducing functions (without a departure function) 

Mixture region Adjusted reducing functions Only adjusted 
 and binary specific and generalised reducing functions 
 departure function departure function (no departure function)

Gas phase 0 – 30 MPa 
1.2 T Tr  1.4 

 0.1%  (0.1 – 0.2)%  (0.5 – 1)% 

Gas phase 0 – 30 MPa 
1.4 T Tr  2.0 

 0.1%  0.1%  (0.3 – 0.5)% 

Gas phase 0 – 20 MPa 
1.2 T Tr  1.4 

w
w

 0.1% 
w

w
 0.5% 

w
w

 1% 

Gas phase 0 – 20 MPa 
1.4 T Tr  2.0 

w
w

 0.1% 
w

w
 0.3% 

w
w

 0.5% 

Phase equilibrium 
100 K T  140 K 

 (0.1 – 0.2)%  (0.2 – 0.5)%  (0.5 – 1)% 

Phase equilibrium 
p

p
s

s
 (1 – 3)% 

p
p

s

s
 (1 – 5)% 

p
p

s

s
 5% 

Liquid phase 0 – 40 MPa 
T Tr  0.7 

 (0.1 – 0.3)%  (0.2 – 0.5)%  (0.5 – 1)% 

a The relative uncertainty in isobaric and isochoric heat capacity is estimated to be less than (1 – 2)% 
in the homogeneous gas, liquid, and supercritical regions independent of the type of developed 
binary equation (see also the statements given in Sec. 7.13.1). 

Table 7.19 summarises the roughly estimated uncertainties of the different binary equations in 
the selected thermodynamic properties and for the different regions of the fluid surface for 
those mixtures for which a binary specific or generalised departure function was developed, 
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or only adjusted reducing functions were used75. The given general statements result from 
conservative estimations. For many individual mixtures, properties, or compositions, the 
uncertainty is often well below the maximum values given in Table 7.19. This concerns, for 
example, the uncertainty in liquid phase density and in vapour pressure of binary mixtures 
composed of very similar alkanes for which a generalised departure function is used, such as 
ethane–propane, propane–n-butane, propane–isobutane, or n-butane–isobutane, which is often 
within the range given for mixtures for which a binary specific departure function was 
developed. The same is valid for other binary mixtures composed of similar (or similar 
behaving) components taken into account only by adjusted reducing functions (or even 
without any fitting), such as methane–argon, nitrogen–oxygen, nitrogen–argon, 
carbon dioxide–ethane, n-heptane–n-octane, oxygen–argon, etc. Liquid phase densities of 
mixtures consisting of heavier hydrocarbons, such as n-pentane–n-hexane, n-pentane–
n-heptane, or n-hexane–n-heptane, are reproduced to within (0.2 – 0.5)%.

The uncertainty statements listed in Table 7.19 may be exceeded when mixtures show a 
comparatively strong real mixture behaviour. The difference between the critical temperatures 
of the pure components can be used as a very simplified indication of the extent of the real 
behaviour. When the critical temperatures differ by more than 150 K, increased uncertainties 
may have to be expected, especially affecting the uncertainty in vapour pressure.

It is very difficult to give a general statement on the accuracy achieved for binary mixtures 
which are taken into account by using only reducing functions with different combining rules 
(no fitting). For binary mixtures composed of similar behaving components, e.g. similar 
alkanes, comparable uncertainties may be expected as for the mixtures using adjusted 
reducing functions. But because data are not available in most of these cases, the uncertainty 
is basically considered to be unknown.

The development of the new equation of state and the estimates of uncertainty are based on 
experimental data, which (at least for the properties in the homogeneous region) often do not 
cover the entire composition range (see Table 6.4). Therefore, the uncertainty also depends on 
the composition. One exception of considerable importance for natural gases is the binary 
mixture methane–nitrogen. Here, the uncertainty statements given in Table 7.19 are 
approximately valid over the entire composition range. Further details on the temperature, 
pressure, and composition ranges covered by the available experimental data for binary 
mixtures are given in Table 6.4 (see also Tables A2.1, A2.6, and A2.7 of the appendix). 

                                                
75  Reduced temperature ranges are used for a general classification. Normally, this requires the 

determination of T xr ( ) according to Eq. (7.10). An estimate for Tr  depending on the mixture 
composition can be obtained from a linear combination of the critical temperatures of the two 
components according to T x T x Tr c c1 1 2 2, , .
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7.14 The Developed Property Calculation Software 

Based on the tangent-plane stability analysis and the pT flash and phase envelope algorithms 
described in Secs. 7.5.1, 7.6, 7.7.1, and 7.7.2, a comprehensive software package was 
developed enabling the calculation of a number of thermodynamic properties from the new 
mixture model. The stability analysis allows for “blind” property calculations for any binary 
and multi-component mixture consisting of the 18 natural-gas components listed in Table 4.2. 
The software enables the calculation of thermodynamic properties in the homogeneous gas, 
liquid, and supercritical regions, and allows extensive VLE calculations, including pT flash, 
phase envelope, dew point, and bubble point calculations at arbitrary mixture conditions 
without any user-provided initial estimates.  

The software package contains an executable Fortran program, a dynamic link library (DLL), 
and a Microsoft Excel Add-in. The executable Fortran program basically enables the same 
type of calculations as provided by the exported DLL functions and subroutines (depending 
on the input variables temperature, pressure, and overall mixture composition; see 
Table 7.20), but uses a fixed format for the output of the calculations. With the Excel Add-in, 
the property functions and subroutines exported by the DLL can be added to the standard 
function volume of Microsoft Excel, and thus can be used as easily as standard Excel 
functions and array formulas. Aside from single flash calculations, saturation points, phase 
envelopes, and lines of constant vapour fraction can be calculated and displayed directly from 
within an Excel spreadsheet using either the pressure-based or the volume-based phase 
envelope algorithm (see Secs. 7.7.1 and 7.7.2). Furthermore, the DLL can easily be integrated 
into programs developed by the user. 

Along with the density (and the saturated phase densities in case the mixture is split in two 
phases) at a given temperature, pressure, and overall mixture composition, almost all of the 
thermal and caloric properties listed in Table 7.1 and selected derivatives of those given in 
Table 7.2 can be calculated from the software. The output of the functions can be in either 
molar or specific units. In addition, the fugacity and fugacity coefficient of each mixture 
component [see Eqs. (5.42) and (5.43); see also Table 7.3 and Sec. 7.3], the vapour fraction 
[see Eq. (5.54)], and the K-factors [see Eq. (5.41)] and phase compositions in case of a phase 
split can be obtained. A list of the calculable thermodynamic properties and their respective 
functions and subroutines depending on the different combinations of the input variables is 
given in Table 7.20. The property functions and subroutines will return defined negative 
values if an input or internal error occurs. Furthermore, defined negative values are returned 
to indicate certain conflicts concerning the calculation of properties at the specified overall 
mixture conditions (e.g. the speed of sound can be calculated for each of the equilibrium 
phases in case of a phase split, but not for the overall equilibrium system). Further details are 
provided in the manual of the software package [see Kunz and Wagner (2006)]. 

7.14   The Developed Property Calculation Software 
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Table 7.20 List of the calculable thermodynamic properties and their respective functions and 
subroutines developed for single property calculations from the dynamic link library 

Property Symbol Function or subroutine depending on 
T, p, and x T, , and x

Functions
Pressure p – POTDX 
Density  DOTPX – 
Compression factor Z  ZOTPX ZOTDX 
Enthalpy h HOTPX HOTDX 
Entropy s  SOTPX SOTDX 
Isobaric heat capacity cp  CPOTPX CPOTDX 
Isochoric heat capacity cv  CVOTPX CVOTDX 
Speed of sound w WOTPX WOTDX 
Isentropic exponent  CAPOTPX CAPOTDX 
Joule-Thomson coefficient JT  RJTOTPX RJTOTDX 
Internal energy u  UOTPX UOTDX 
Gibbs free energy g  GOTPX GOTDX 
Helmholtz free energy a  AOTPX AOTDX 
Derivative of p with respect to T p T x,  DPDTOTPX DPDTOTDX 
Derivative of p with respect to p T x,  DPDDOTPX DPDDOTDX 
Derivative of  with respect to T T p x,  DDDTOTPX DDDTOTDX 
Derivative of p with respect to V n p V T n,  DPDVOTPX DPDVOTDX 
Derivative of V with respect to T 1 n V T p n,  DVDTOTPX DVDTOTDX 
Vapour fraction  FRACOTPX – 

Subroutinesa

Fugacity fi  SFUGOTPX – 
Fugacity coefficient i  SPHIOTPX – 
Phase compositions xi , xi  SXFLOTPX – 
Natural logarithm of K-factors ln Ki  SLNKOTPX – 

Property Symbol Function depending on T and x

Second thermal virial coefficient B  BOTX  
Third thermal virial coefficient C  COTX  
a The subroutines return the respective mixture properties for each component i, with i = 1, 2, ..., N.

The property functions and subroutines depending on temperature, pressure, and molar 
composition listed in Table 7.20 allow for “blind” single-phase and two-phase calculations, 
i.e. the number of phases does not have to be known in advance76. A phase type variable 

                                                
76  The property functions depending on temperature, density, and composition listed in Table 7.16 do 

not allow for “blind” calculations. To be able to perform such “blind” calculations similar to that 
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which can be specified by the user enables, among others, the choice of the output of the 
functions and subroutines in case of a phase split (e.g. property of the overall equilibrium 
system, saturated liquid property, or saturated vapour property) when using the property 
functions and subroutines from within an Excel spreadsheet.  

Fig. 7.22 Example screenshot demonstrating the calculation of selected thermodynamic properties of 
a 14-component natural gas mixture under VLE conditions using the functions and 
subroutines exported by the GERG-2004 dynamic link library from within an Excel 
spreadsheet.

The phase envelope routines automatically calculate (and indicate) critical points as well as 
maxima and minima in temperature and pressure (if it exists for the specified vapour fraction 
and mixture composition) as described in Sec. 7.7.1. Aside from the saturation temperature 
and pressure, the output of the phase envelope routines includes the composition of the 
incipient phase (or of the equilibrium phases in case 0  1) and the K-factors of all 
components at each calculated point. Moreover, the volume-based phase envelope routine 

                                                                                                                                                        
using inputs of temperature, pressure, and composition, the development of a TV flash routine (see 
Sec. 7.9.2) is required. 

7.14   The Developed Property Calculation Software 
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yields the compressibility factors of the phase boundary (or of the line of constant vapour 
fraction) and of the incipient (or equilibrium) phase.  

Figures 7.22 – 7.24 show example screenshots of calculations carried out with the general 
software package described above. The calculation of selected thermodynamic properties of a 
14-component natural gas mixture under VLE conditions using the functions and subroutines 
exported by the DLL from within an Excel spreadsheet is shown in Fig. 7.22. The Excel plot 
in Fig. 7.23 displays the phase boundary of the same 14-component natural gas mixture. The 
plot was calculated from the new equation of state using the pressure-based phase envelope 
routine directly from within the Excel table. Figure 7.24 exemplifies a phase boundary 
calculation of a four-component natural gas mixture using the pressure-based phase envelope 
routine in the executable Fortran program.  

Fig. 7.23 Example screenshot of an Excel plot showing the phase envelope for a 14-component 
natural gas mixture as calculated from the new equation of state (GERG-2004),  
Eqs. (7.1) – (7.10), using the pressure-based phase envelope routine exported by the 
GERG-2004 dynamic link library from within the Excel spreadsheet. 
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Fig. 7.24 Example screenshot demonstrating a phase envelope calculation for a four-component 
natural gas mixture using the pressure-based phase envelope routine in the executable 
Fortran program. 

7.14   The Developed Property Calculation Software 
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8 Comparison of the New Equation of State (GERG-2004) 
with Experimental Data and Values from Other  
Equations of State 

In this chapter, the quality of the new wide-range equation of state (GERG-2004 formulation 
or GERG-2004 for short), Eqs. (7.1) – (7.10), is discussed based on comparisons with 
selected experimental data used in the development of the mixture model and with further 
experimental data used for the validation of the equation (see Chap. 6). Many figures also 
show results of the AGA8-DC92 equation of state of Starling and Savidge (1992), which is 
the current, internationally accepted standard for the calculation of compression factors in the 
gas phase. Since the AGA8-DC92 equation was developed on the IPTS-68 temperature scale, 
all temperatures were converted to the IPTS-68 scale before values were calculated from this 
equation. Values calculated from the cubic equation of state of Peng and Robinson (1976) 
using binary interaction parameters taken from Knapp et al. (1982) are also included in 
several figures showing comparisons with liquid phase properties, saturated liquid densities, 
and other vapour-liquid equilibrium properties. For a brief description of these two equations, 
see Secs. 2.1.1 and 2.1.2. The multi-fluid mixture models developed by Lemmon and 
Jacobsen (1999), Lemmon et al. (2000), Klimeck (2000), and Miyamoto and Watanabe 
(2003), which are all limited to a smaller number of natural gas components than considered 
in this work (see Table 5.1), are used for comparison as well.  

The GERG-2004 formulation considers mixtures consisting of the 18 natural gas components 
listed in Table 4.2. The collected experimental data for binary mixtures composed of these 
components cover a total of 98 binary systems (see Table 6.4). The corresponding huge 
number of data for the various thermal and caloric properties measured for wide ranges of 
temperature, pressure, and composition do not allow for a detailed graphical comparison of 
the new equation of state with all of the available experimental information. Therefore, the 
representation of data for binary mixtures by the GERG-2004 formulation is exemplified by 
deviation plots for selected binary systems (limited to certain ranges of temperature, pressure, 
and composition). The selected data represent, in general, the most accurate measurements 
available for the respective mixture property. In this context, it should be noted that the actual 
number of data used for the development and evaluation of the new equation of state far 
exceeds the selected experimental information shown in the figures in this chapter.  

The discussion concerning properties of binary mixtures is divided into three different parts. 
Section 8.1 focuses on the description of thermal and caloric properties of binary mixtures of 
methane with the further main natural gas constituents nitrogen, carbon dioxide, and ethane, 
and the secondary alkanes propane and n-butane. These binary systems are of considerable 
importance for the description of the thermal and caloric properties of various types of natural 
gases and similar mixtures. Additional comments and comparisons are given for other binary 
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mixtures consisting of these important natural gas components. Section 8.2 summarises the 
representation of binary data of mixtures composed of the hydrocarbons ethane, propane, 
n-butane, isobutane, n-pentane, isopentane, n-hexane, n-heptane, and n-octane. The accurate 
description of the properties of binary hydrocarbon mixtures is of particular importance in the 
treatment of liquefied petroleum gas (LPG), the production and refining of light oil, and 
processes using mixtures of hydrocarbons as alternative refrigerants. Furthermore, the 
accurate description of binary mixtures consisting of such hydrocarbons also improves the 
description of rich natural gases and other uncommon mixtures related to natural gases. A 
collection of other binary systems of the 18 components listed in Table 4.2 that also includes 
binary mixtures which contain or which are purely composed of hydrogen, oxygen, carbon 
monoxide, water, helium, and argon is given in Sec. 8.3. For instance, this section includes 
comparisons with binary data of hydrogen–hydrocarbon mixtures, mixtures of the air 
components nitrogen, oxygen, and argon, mixtures containing water, and other systems.  

Finally, the quality of the new equation of state in the description of various types of natural 
gases, similar gases, and other multi-component mixtures is discussed in Sec. 8.4.  

A statistical comparison of the new equation of state with all of the collected experimental 
data and values calculated from other equations of state is given in Tables A2.1, A2.2, and 
A2.4 of the appendix. The values for the statistical quantities are determined by comparisons 
of property values calculated from the respective equation of state to experimental data. The 
percentage deviation in any property z is defined here according to

z
z z

zm
m

L
N
MM

O
Q
PP

exp calc

exp
, (8.1) 

and the average absolute deviation can be written as 

AAD 1

1M
zm

m

M
, (8.2) 

where M is the number of data points. The definitions of the further statistical quantities used 
in this work, along with further information on the calculation of these values, are given in the 
appendix [see Eqs. (A2.3) – (A2.5)].

Statistical comparisons only provide averaged information on the quality of an equation of 
state regardless of the temperature, pressure, density, or composition dependence of the 
deviations. Therefore, the graphical comparison of deviations between experimental data and 
values calculated from an equation of state along isotherms, isobars, isochores, or isopleths is 
always preferable for the assessment of the quality of an equation in the description of 
thermodynamic properties. The baseline in all of the following deviation plots is the new 
equation of state, GERG-2004, unless otherwise explicitly stated. When values calculated 
from other equations of state are additionally displayed (together with the experimental data 

8   Comparison of the New Equation of State ... with Experimental Data... 
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and the new equation of state as the baseline), they are calculated for the lowest temperature 
written at the top of each small plot, unless otherwise indicated. Data points shown at the 
upper or lower vertical limits of the graph indicate that the points are off scale. In the 
following text, absolute values of the deviations are used in the discussions of maximum 
errors or systematic offsets.  

In order to retain a certain level of transparency, the comparisons in the homogeneous region 
of binary mixtures, showing deviations of values calculated from other equations of state 
together with the experimental data and the new equation of state as the baseline, are limited 
to a number of selected mixture compositions. Detailed statistical comparisons for distinct 
binary mixture compositions of homogeneous properties are given in Table A2.1 of the 
appendix.

8.1 The Representation of Thermal and Caloric Properties of 
Selected Binary Mixtures of the Natural Gas Main Constituents 

As described in Sec. 7.10, the properties of binary mixtures of methane with the additional 
main natural gas components nitrogen, carbon dioxide, and ethane, or with the secondary 
alkanes propane and n-butane, are described by using adjusted reducing functions along with 
binary specific or generalised departure functions. The same is true for other important binary 
mixtures consisting of the main natural gas components nitrogen, carbon dioxide, and ethane, 
and the secondary alkanes propane, n-butane, and isobutane as summarised in Table 7.16. The 
comparatively complex development of these equations enables the representation of even the 
best measurements to within their low experimental uncertainty (see Table 6.2). The resulting 
accuracy of the binary equations for the description of thermal and caloric properties for 
different fluid regions is described in the following subsections.  

8.1.1 The p T Relation in the Homogeneous Region 

To fulfil the high demands on the accuracy in the description of the p T relation of natural 
gases and similar mixtures in standard natural gas applications (gas metering, transmission, 
and storage; see Chap. 3), the accurate representation of binary p T data at supercritical 
temperatures by the new equation of state is of considerable importance. Advanced natural 
gas applications dealing, for example, with liquefied natural gas (LNG) require in addition the 
accurate description of the p T relation in the liquid phase of binary and multi-component 
mixtures of the natural gas main constituents (and further hydrocarbon components; see also 
Secs. 8.2.1 and 8.4.3). Improvements achieved for binary mixtures, in general, also result in 
an improved description of the properties of natural gases, similar gases, and other multi-
component mixtures (compared to the previous equations of state) as will be shown in 
Sec. 8.4. 
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Methane–Nitrogen and Methane–Ethane 

Experimental measurements of gas phase densities for the binary mixture methane–nitrogen 
and their percentage deviations from the GERG-2004 formulation are shown in Fig. 8.1 for 
temperatures ranging from 240 K to 400 K. The selected data cover a large range of molar 
concentrations from 10% to 75% of nitrogen. The p T data recently published by Chamorro 
et al. (2006) for 10% and 20% nitrogen represent the most accurate measurements in the gas 
phase. The data were measured using a single-sinker densimeter and their uncertainty is 
estimated to be  0.03%. The uncertainty in density of the measurements of Jaeschke 
and Hinze (1991), covering molar concentrations from 20% to 75% of nitrogen and 
temperatures ranging from 270 K to 353 K, amounts to approximately less than 0.07%. For 
the data of Haynes and McCarty (1983) and Straty and Diller (1980), the uncertainty in 
density is assumed to be about (0.1 – 0.2)%. The deviation plots clearly demonstrate that the 
new equation of state is able to represent all of the data to within their experimental 
uncertainty for all temperatures and at pressures up to 30 MPa77, independently of the mixture 
composition. Important improvements compared to the AGA8-DC92 equation of state and the 
multi-fluid mixture model of Lemmon and Jacobsen (1999) are achieved at temperatures 
below 275 K. At 240 K, the deviations of values calculated from the AGA8-DC92 equation 
for nitrogen concentrations of 10% (dashed line), 20% (dot-dashed line), and 68% (dot-dot-
dashed line) clearly exceed the uncertainty of the measurements with deviations of up to 
0.14% (10% nitrogen), up to 0.15% (20% nitrogen), and more than 0.2% (68% nitrogen, 
p  30 MPa). Even at pipeline conditions (for pressures below 12 MPa) the deviations 
amount to more than 0.1% for the AGA8-DC92 equation of state. At 270 K, the AGA8-DC92 
equation is also not able to represent the different data sets as accurately as the GERG-2004 
formulation. The composition dependence of the deviations is particularly of concern. Values 
calculated from the AGA8-DC92 equation for the mixture containing 68% of nitrogen deviate 
by more than 0.1% from the corresponding measurements of Straty and Diller (1980) at 
elevated pressures, and values calculated for the mixtures containing 10% and 20% of 
nitrogen do not agree within the experimental uncertainty of the very accurate data of 
Chamorro et al. (2006). This is also true for the multi-fluid mixture model of Lemmon and 
Jacobsen (1999) as shown for the mixture containing 20% of nitrogen (dot-dot-dashed-dot-
dashed line). It should be noted, however, here (and also for other comparisons shown in the 
following) that the recent measurements of Chamorro et al. (2006) were not available at the 
time the previous equations were developed (preliminary measurements on 20% nitrogen 
were used for the development of the new equation of state, and the results on 10% nitrogen 
were available prior to the publication of the data, but only used for comparison). At higher 
temperatures of 350 K and above, all equations yield quite similar results.  

77  Data measured by Straty and Diller (1980) at pressures above 30 MPa are described by the new 
equation of state within the experimental uncertainty as well. 

8.1   The Representation of ... Mixtures of the Natural Gas Main Constituents 
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Fig. 8.1 Percentage density deviations of selected experimental p T data for the methane–nitrogen 
binary mixture from values calculated from the new equation of state (GERG-2004), 
Eqs. (7.1) – (7.10). Values calculated from the AGA8-DC92 equation of Starling and 
Savidge (1992) and the mixture model of Lemmon and Jacobsen (1999) are plotted for 
comparison. Bu: Burnett apparatus, Op: optical interferometry method. 
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Experimental p T data for the binary mixture methane–ethane are displayed in the deviation 
plots of Figs. 8.2 and 8.3 for temperatures ranging from 233 K to 350 K, pressures up to 
30 MPa, and ethane concentrations of 4% to 30%. The data measured by Ruhrgas (1990) 
using an optical interferometry method (Op) and a Burnett apparatus (Bu) cover temperatures 
from 270 K to 350 K. The uncertainty in density of these measurements amounts to 

 0.07%, similar to the data of Jaeschke and Hinze (1991) for the methane–nitrogen 
binary mixture using the same experimental equipment. The recent measurements of Wöll 
and El Hawary (2003) cover temperatures down to 233 K at ethane concentrations of 8% and 
15%. The data were measured using a combined viscometer-densimeter apparatus. The 
uncertainty in density of these measurements is estimated to be (0.05 – 0.1)% with an 
increased uncertainty at pressures below 5 MPa. Except for the p T data measured by Wöll 
and El Hawary (2003) for the mixture containing 15% of ethane at the 233 K isotherm and 
pressures above 10 MPa (see Fig. 8.3), all of the measurements are represented by the GERG-
2004 formulation well within their experimental uncertainty. This also includes the data of 
Ruhrgas (1990) for the mixture containing 30% of ethane for which the AGA8-DC92 
equation yields a maximum deviation of 0.3% (see Table A2.1 of the appendix). The reduced 
temperature T Tr  for the mixture containing 30% of ethane at 270 K amounts to 1.19, which 
is actually in agreement with (slightly below) the lower limit of the reduced temperature range 
important in standard natural gas applications (see also Sec. 4.8). Considerably lower values 
of reduced temperatures are obtained for the data of Wöll and El Hawary (2003) at 233 K for 
the mixtures containing 8% (T Tr 116. ) and 15% (T Tr 111. ) of ethane. As no other 
accurate experimental information is available at this low reduced temperature, the 
representation of the 15% ethane data at 233 K with deviations of up to 0.15% at pressures 
above 10 MPa is quite satisfactory.

Similar to the previously discussed methane–nitrogen binary mixture, significant 
improvements are also achieved for the methane–ethane mixture at temperatures T  270 K 
as compared to other equations of state. While the AGA8-DC92 equation is able to represent 
the data for 8% of ethane to within their experimental uncertainty for all measured 
temperatures, the equation, however, fails to accurately describe the p T data of mixtures 
containing higher fractions of ethane at temperatures of 270 K and below, as shown for the 
mixtures containing 16% (see Fig. 8.2) and 15% (see Fig. 8.3) of ethane. At 233 K and 15% 
ethane, the deviations obtained from the AGA8-DC92 equation even exceed values of 0.3% at 
pressures above 8 MPa. Deviations between the measurements for ethane mole fractions of 
8% and higher and values calculated from the mixture model of Lemmon and Jacobsen 
(1999) exceed the experimental uncertainty of the data at temperatures of 270 K and lower, 
but, in contrast to the AGA8-DC92 equation, the deviations are within 0.3%.

For the binary mixtures methane–nitrogen and methane–ethane, accurate p T data were 
measured in the liquid phase covering wide ranges of pressure and composition. Figure 8.4  

8.1   The Representation of ... Mixtures of the Natural Gas Main Constituents 
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Fig. 8.2 Percentage density deviations of selected experimental p T data for the methane–ethane 
binary mixture from values calculated from the new equation of state (GERG-2004), 
Eqs. (7.1) – (7.10). Values calculated from the AGA8-DC92 equation of Starling and 
Savidge (1992) and the mixture model of Lemmon and Jacobsen (1999) are plotted for 
comparison. Bu: Burnett apparatus, Op: optical interferometry method. 
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Fig. 8.3 Percentage density deviations of selected experimental p T data measured by Wöll and El 
Hawary (2003) for the methane–ethane binary mixture from values calculated from the 
new equation of state (GERG-2004), Eqs. (7.1) – (7.10). Values calculated from the 
AGA8-DC92 equation of Starling and Savidge (1992) and the mixture model of Lemmon 
and Jacobsen (1999) are plotted for comparison. 

shows deviations of these data from values calculated with the new mixture model over 
temperature ranges that are important for applications with liquefied natural gas (LNG). The 
comparisons for the binary system methane–nitrogen are based on the data of Straty and 
Diller (1980) and Rodosevich and Miller (1973). While the data of Rodosevich and Miller 
(1973) were measured in the vicinity of the vapour-liquid phase boundary at molar 
concentrations of 5% and 16% of nitrogen and temperatures of 91 K to 115 K, the data of 
Straty and Diller (1980) cover pressures up to about 35 MPa at nitrogen mole fractions of 
29%, 50%, and 68% over a wide range of temperature down to 82 K. The GERG-2004 
formulation represents all of the selected data with very low deviations of clearly less than 

0.15% (generally within 0.1%). Similar results are exemplified by the deviation plots in 
Fig. 8.4 for the binary system methane–ethane. The data of Rodosevich and Miller (1973) 
were measured over virtually the same temperature range as for the methane–nitrogen mixture 
and also near the phase boundary, but covering a wider range of compositions. The 
measurements of Haynes et al. (1985) cover pressures up to about 35 MPa at ethane mole 

8.1   The Representation of ... Mixtures of the Natural Gas Main Constituents 
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fractions of 31%, 50%, and 65% and temperatures down to 100 K. As with the methane–
nitrogen binary system, all of the selected methane–ethane binary data are represented by the 
new equation of state to within about 0.1%.

The GERG-2004 formulation achieves a very accurate description of the p T relation in the 
liquid phase as will be emphasised in several passages of this chapter. As mentioned in 
Sec. 2.1.1, the AGA8-DC92 equation of state is not valid in the liquid phase. Values 
calculated from cubic equations of state, which are still widely used in many technical 
applications, deviate from the measurements by several percents. Compared to the new 
equation of state, only the mixture model of Lemmon and Jacobsen (1999) yields an 
acceptable accuracy in the description of liquid phase densities. Values calculated from this 
model deviate from the measurements shown in Fig. 8.4 by up to 0.3%.

Methane–Carbon Dioxide 

Even though a number of measurements from several different authors is available for the 
p T relation of the binary system methane–carbon dioxide (see Table 6.4 and Table A2.1 of 
the appendix), the quality and extent of the data over the range important for standard natural 
gas applications is scarce compared to the methane–nitrogen and methane–ethane binary 
mixtures (and also compared to other binary systems consisting of the natural gas main 
constituents). Several data sets, such as the data of Gasunie (1990), are limited to a 
comparatively narrow temperature and pressure range, which complicates the development of 
an accurate, wide-ranging equation of state. The recent and most accurate data of Glos et al.
(2000) measured at Ruhrgas for 6% and 15% of carbon dioxide using a two-sinker densimeter 
significantly improved the data situation for an important but rather small range of 
temperatures (273 K to 290 K) and pressures (up to 10 MPa). Accurate p T data over wider 
ranges of temperature and pressure were measured by Wöll and El Hawary (2003) for carbon 
dioxide concentrations of 8% and 15%. These most recent data cover temperatures from 
233 K to 373 K at pressures up to 18 MPa (and at densities up to 15 mol dm 3) and represent 
the only available accurate experimental information for the considered mixture compositions 
at these extended temperature and pressure conditions. These data are located near the critical 
region and provide valuable information on the strong curvature in this region. Further 
accurate gas phase densities were reported by Ruhrgas (1990). Although the data cover the 
temperature range from 270 K to 350 K at pressures up to 28 MPa, the data are of minor 
importance for standard natural gas applications because they were only measured for a 
comparatively high mole fraction of carbon dioxide of 31%. The data are, however, important 
for the extended range of application. 

The GERG-2004 formulation achieves substantial improvements, especially at temperatures 
below 300 K, compared to the AGA8-DC92 equation and the multi-fluid mixture models of 
Lemmon and Jacobsen (1999) and Klimeck (2000), as shown in Fig. 8.5. All of the accurate 

8.1   The Representation of ... Mixtures of the Natural Gas Main Constituents 
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gas phase and gas-like supercritical densities, even at comparatively low temperatures down 
to 233 K, are described by the new equation of state well within their experimental 
uncertainty, which is estimated to be less than 0.03% for the measurements of Glos et al.
(2000), and (0.05 – 0.1)% for the data of Wöll and El Hawary (2003) (again with an increased 
uncertainty at pressures below 5 MPa). The uncertainty in density of the data of Gasunie 
(1990) is in general not better than 0.1%. For the data measured by Ruhrgas (1990), the 
uncertainty in density is assumed to be less than (0.07 – 0.1)% with a slightly higher 
uncertainty for this mixture for the measurements at elevated pressures. However, all of the 
previous equations of state fail to accurately describe the data as displayed in Fig. 8.5 for 8% 
and 15% of carbon dioxide and show deviations from the measurements below 273 K which 
far exceed values of 0.3%. The model of Lemmon and Jacobsen (1999) even deviates from 
the measurements for 15% carbon dioxide at 293 K by up to 0.3% at about 17 MPa.

In the range relevant for standard natural gas applications, experimental gas phase densities 
for the methane–carbon dioxide binary mixture are limited to pressures below 20 MPa. In 
order to be able to accurately describe the p T relation of natural gas mixtures containing 
higher fractions of carbon dioxide at pressures above 20 MPa, calculated data were 
additionally used in the gas phase for the development of the new binary equation for the 
methane–carbon dioxide mixture at temperatures from 233 K to 453 K and pressures up to 
31 MPa. These data were generated from a preliminary equation developed using the 
available experimental measurements and values calculated from accurate natural gas data for 
the mixture “GU2”, which contains a comparatively high mole fraction of carbon dioxide of 
about 8%. Due to this comparatively high carbon dioxide concentration, the equation for the 
binary system methane–carbon dioxide significantly contributes to the description of this 
carbon dioxide rich natural gas by the new mixture model. The “correct” contribution can be 
determined directly from the multi-fluid mixture model by applying a (simple) corresponding 
states approach78.

78  Assuming that all other binary equations behave accurately at the reduced properties  and  of the 
multi-component natural gas mixture, the contribution of the -derivative of the part of the 
departure function only depending on  and , ij

r ( , ) / , can be calculated from Eq. (7.12) for 
one binary subsystem i–j (here methane–carbon dioxide), using the experimental information for  
the p T data of the respective natural gas for the left-hand term in Eq. (7.12) according  
to r

exp exp( ) /Z 1 , where Z p RTexp exp exp exp/ ( ) and exp exp r exp/ ( )x . Choosing a 
binary composition for which artificial data is desired, the pressures for the set of reduced mixture 
properties exp and exp  obtained from the natural gas data follow from p RT ( )1 exp

r ,
with r r

exp exp( , , )x  now calculated from Eq. (7.12) for the binary mixture. The 
corresponding binary mixture densities and temperatures follow from Eq. (7.4). In a similar way, 
the shape of a departure function, or rather its derivative with respect to , ij

r ( , ) / , required 
for an accurate description of the p T relation of a binary mixture can be determined from accurate 
experimental binary data, enabling the development of a suitable functional form for ij

r  (see also 
Secs. 5.3.4 and 7.11). This method also works for isochoric heat capacities providing the 
approximate shape of 2 2

ij
r ( , ) / . 
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Fig. 8.5 Percentage density deviations of selected experimental p T data for the methane–
carbon dioxide binary mixture from values calculated from the new equation of state 
(GERG-2004), Eqs. (7.1) – (7.10). Values calculated from the AGA8-DC92 equation of 
Starling and Savidge (1992) and the mixture models of Lemmon and Jacobsen (1999) and 
Klimeck (2000) are plotted for comparison at temperatures of 233 K, 253 K, 273 K, and 
293 K. Op: optical interferometry method. 

8.1   The Representation of ... Mixtures of the Natural Gas Main Constituents 
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Fig. 8.6 Percentage density deviations 100 100/ ( ) /exp calc exp  of selected 
experimental p T data measured by Hwang et al. (1997a) for the methane–carbon dioxide 
binary mixture from values calculated from the new equation of state (GERG-2004), 
Eqs. (7.1) – (7.10). Calculated data of a preliminary equation of state are also included, see 
text.

Deviation plots showing the experimental measurements of Hwang et al. (1997a) for carbon 
dioxide mole fractions of 10% to 90%, and the calculated gas phase densities at molar 
concentrations of 8% and 15% are displayed in Fig. 8.6 for temperatures ranging from 225 K 
to 253 K and at pressures above 20 MPa. The experimental measurements are represented by 
the GERG-2004 formulation to within (0.1 – 0.3)%, which is in agreement with the assumed 
uncertainty of the data79. Furthermore, it is important to note that only the data for 10% of 
carbon dioxide represent gas phase densities at the measured temperatures, whereas the data 
for carbon dioxide concentrations of 29%, 67%, and 90% are liquid phase densities. 
Comparisons of the artificial data at pressures below 20 MPa with the available accurate gas 
phase densities show that the artificial data are in comparatively good agreement with the 
measurements. Therefore, the uncertainty in gas phase density of the new equation of state at 
pressures above 20 MPa is very likely to be less than (0.1 – 0.2)%, which can, however, not 
be proved until accurate experimental information is available at elevated pressures.  

Methane–Propane and Methane–n-Butane 

79  Comparisons with other measurements (known to be very accurate) show that these and other data 
measured using a pycnometer method are associated with an uncertainty clearly higher than 0.1%, 
although claimed to be less than 0.1% by the authors. 

Deviations of selected experimental measurements for gas phase densities of the binary 
mixtures methane–propane and methane–n-butane from the GERG-2004 formulation are 
shown in Fig. 8.7. The data were measured by Ruhrgas (1990) for 7% of propane and 1.5% of 
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n-butane, and by Ruhrgas (1999) for 15% of propane and 5% of n-butane using an optical 
interferometry method (Op) and a Burnett apparatus (Bu). The data cover temperatures from 
280 K to 353 K for methane–propane and 270 K to 353 K for methane–n-butane at pressures 
up to 30 MPa. The new equation of state represents all of the data to within 0.1%. Most of 
the measurements are described with deviations of clearly less than 0.07%. In contrast to the 
GERG-2004 formulation, the AGA8-DC92 equation of state and the model of Lemmon and 
Jacobsen (1999) are not able to accurately describe the data. Both previous equations deviate 
from the measurements of the two binary mixtures at a propane mole fraction of 15% and a 
n-butane mole fraction of 5% by more than 0.3% even at moderate temperatures around 
310 K. Considerably higher deviations between the data and values calculated from the 
previous equations of state are observed at lower temperatures, exceeding 1% for the 
methane–n-butane binary mixture in the case of the AGA8-DC92 equation of state. Even at 
higher temperatures around 350 K and elevated pressures, values calculated from the model 
of Lemmon and Jacobsen (1999) deviate from the measurements by more than 0.3% for the 
methane–propane mixture and more than 0.2% for the methane–n-butane mixture. 

Aside from the improvements achieved in the description of the p T relation of the selected 
examples mentioned above, the description of the p T relation of other binary mixtures 
composed of the natural gas main constituents, such as nitrogen–carbon dioxide and nitrogen–
ethane, is also improved compared to the previous equations of state. Moreover, data 
available at pressures above 30 MPa or 40 MPa are accurately described as well. Reamer et
al. [Reamer et al. (1944) (CH4–CO2), (1945) (CO2–C2H6), (1947) (CH4–n-C4H10), (1950) 
(CH4–C3H8), (1951) (CO2–C3H8), (1952a) (N2–C2H6)] and Seitz et al. [Seitz and Blencoe 
(1996) and Seitz et al. (1996a) (CH4–N2, CH4–CO2, N2–CO2)] measured data at pressures up 
to 69 MPa (Reamer et al.) and 100 MPa (Seitz et al.), covering wide ranges of composition at 
temperatures up to 511 K (Reamer et al.) and 673 K (Seitz et al.). Comparisons with 
measurements known to be very accurate show that data from these authors are associated 
with a considerably higher uncertainty than the available best measurements. Typical 
deviations between the data and values calculated from the GERG-2004 formulation are 
within (0.5 – 1)%, which agrees well with the assumed (from experience) uncertainty of the 
measurements.  

8.1.2 Caloric Properties in the Homogeneous Region 

Accurate data for caloric properties of binary mixtures, suitable for discussion, are primarily 
available for speeds of sound and enthalpy differences in the gas phase. Isochoric and isobaric 
heat capacities, which also cover the liquid phase, are available for only a few binary 
mixtures.  
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Methane–Nitrogen

For the binary mixture methane–nitrogen, very accurate speeds of sound were reported by 
Trusler (2000) and Estela-Uribe (1999), recently published together by Estela-Uribe et al.
(2006), covering temperatures from 220 K to 400 K at pressures up to 30 MPa for nitrogen 
concentrations of 10% and 20%, and temperatures from 170 K to 400 K at pressures up to 
16 MPa for 54% of nitrogen. The mixture containing 54% of nitrogen was studied along 
pseudo-isochores at molar densities between 0.2 mol dm 3 and 5 mol dm 3. The data cover 
large reduced temperature ranges of 1.20 T Tr  2.19 for 10% nitrogen, 1.25 T Tr  2.28 
for 20% nitrogen, and 1.12 T Tr  2.62 for 54% nitrogen80. The uncertainty in speed of 
sound is estimated to be less than (0.02 – 0.05)% for the measurements at nitrogen mole 
fractions of 10% and 20%, and for almost all of the data measured for 54% of nitrogen. 
Additional accurate speed of sound data were measured by Younglove et al. (1993) for 
nitrogen mole fractions of 5%, 15%, and 29% at temperatures from 250 K to 350 K and 
pressures up to 11 MPa. The uncertainty in speed of sound of these data is estimated to be 
higher (  0.1%) than that of the measurements of Estela-Uribe et al. (2006).

The GERG-2004 formulation represents (almost) all of the measurements with very low 
deviations of less than 0.05%, regardless of the mixture composition, as shown in the 
deviation plots of Fig. 8.8. The very accurate data sets of Estela-Uribe et al. (2006) are 
described by the new equation of state well within their low experimental uncertainty. The 
few data points (measured for 54% of nitrogen) that exceed deviations of 0.05% all lie along 
the pseudo-isochore at the highest molar density and are associated with an increased 
uncertainty as reported by the authors.

Values calculated from the AGA8-DC92 equation deviate from the measurements of 
Estela-Uribe et al. (2006) for nitrogen mole fractions of 10% and 20% at 220 K by clearly 
more than 0.1% at pressures around 11 MPa and above 17 MPa (with a maximum deviation 
of 0.4% for 20% nitrogen at about 30 MPa). Even at a considerably higher temperature of 
300 K and moderate pressures, the AGA8-DC92 equation is not able to describe all of the 
data to within their experimental uncertainty. The model of Lemmon and Jacobsen (1999) 
significantly deviates from the measurements in a wide range of pressures, reaching 
maximum deviations of about 0.3% for 10% nitrogen around 15 MPa for 220 K, and about 
0.4% for 20% nitrogen around 16 MPa for the same temperature. Even at higher temperatures 
of 300 K, the deviations calculated from this model exceed values of two to four times the 
experimental uncertainty of the data.

80  With regard to the targeted uncertainty in the description of speeds of sound (and other caloric 
properties) of multi-component natural gas mixtures at temperatures down to 250 K (see Chap. 3 
and also Sec. 8.4.2), it should be noted that the measurements for 10% and 20% nitrogen at the 
220 K isotherm are especially of considerable importance for the accurate description of the speed 
of sound of natural gases at temperatures around 250 K. 

8.1   The Representation of ... Mixtures of the Natural Gas Main Constituents 
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Fig. 8.8 Percentage deviations of selected experimental speed of sound data for the methane–
nitrogen binary mixture from values calculated from the new equation of state (GERG-
2004), Eqs. (7.1) – (7.10). Values calculated from the AGA8-DC92 equation of Starling 
and Savidge (1992) and the mixture model of Lemmon and Jacobsen (1999) are plotted for 
comparison at temperatures of 220 K, 250 K, and 300 K. 

The temperature and pressure ranges covered by the speeds of sound of Estela-Uribe et al.
(2006) for nitrogen concentrations of 10% and 20% include those covered by the very 
accurate p T data of Chamorro et al. (2006), measured at virtually the same mixture 
compositions (see Sec. 8.1.1). The data sets of these two sources are represented by the new 
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equation of state well within their low experimental uncertainty, indicating a very high degree 
of thermodynamic consistency (for different thermodynamic properties).  

Methane–Ethane

Experimental measurements of gas phase speeds of sound for the binary mixture methane–
ethane and their percentage deviations from the GERG-2004 formulation for temperatures 
ranging from 250 K to 350 K are shown in Fig. 8.9. The selected data cover ethane mole 
fractions from 5% to 31%. The very accurate and wide ranging data set measured by Costa 
Gomes and Trusler (1998) for 15% ethane covers pressures up to 20 MPa. According to the 
authors, the uncertainty of the data at 250 K amounts to w w  0.05%, whereas an 
uncertainty of w w  0.03% is estimated for higher temperatures. The accurate 
measurements of Trusler (1994) for 20% ethane cover pressures up to 13 MPa (at 375 K), and 
the data reported by Younglove et al. (1993) for ethane mole fractions of 5%, 15%, and 31% 
are limited to pressures up to 11 MPa. Most of the data are represented by the new equation of 
state with very low deviations of less than 0.05%. The maximum deviations do not exceed 
0.1%, except for one data point on the 250 K isotherm at 20 MPa. This single point, for which 
the new equation deviates by 0.28%, is most likely associated with an increased uncertainty 
since no other equation developed during the optimisation and fitting procedure was able to 
reproduce this particular point considerably better. Moreover, this assumption is supported by 
the fact that the authors mention experimental difficulties along this isotherm.  

The accurate representation of the 15% ethane data along the 250 K isotherm (T Tr 119. ) at 
pressures between 5 MPa and 10 MPa (where the speed of sound exhibits a minimum 
followed by a comparatively steep increase towards higher pressures) is especially of major 
importance for the accurate description of the speed of sound of natural gases at such 
comparatively low temperatures. It was observed during the development of the new equation 
that even a slightly less accurate description of the binary data would adversely affect the 
representation of the available multi-component speeds of sound (see also Sec. 8.4.2), 
underlining the importance of accurate and wide-ranging binary speed of sound data for the 
development of accurate equations of state for mixtures.  

Neither the AGA8-DC92 equation nor the model of Lemmon and Jacobsen (1999) is able to 
describe the available speed of sound data as accurately as the new equation of state. 
Significant improvements compared to the previous equations are achieved by the GERG-
2004 formulation not only at temperatures of T  275 K, but also at higher temperatures as 
exemplified by the 350 K isotherm. Deviations between the accurate measurements of Costa 
Gomes and Trusler (1998) for 15% ethane and values calculated from both previous equations 
clearly exceed the experimental uncertainty of the data over wide ranges of temperature and 
pressure as shown in Fig. 8.9. At 250 K, values calculated from the AGA8-DC92 equation of  

8.1   The Representation of ... Mixtures of the Natural Gas Main Constituents 
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Fig. 8.9 Percentage deviations of selected experimental speed of sound data for the methane–ethane 
binary mixture from values calculated from the new equation of state (GERG-2004), 
Eqs. (7.1) – (7.10). Values calculated from the AGA8-DC92 equation of Starling and 
Savidge (1992) and the mixture model of Lemmon and Jacobsen (1999) are plotted for 
comparison at temperatures of 250 K, 275 K, and 350 K. 

state deviate by more than (0.3 – 0.8)% from the data, whereas the model of Lemmon and 
Jacobsen (1999) shows deviations of more than (0.3 – 0.5)%. The model of Lemmon and 
Jacobsen (1999) deviates from the measurements by more than 0.1% even at 350 K.  

The accurate and improved description of the speed of sound of binary mixtures and natural 
gases (see Secs. 8.1.2 and 8.4.2) is of considerable practical importance for the precise 
determination of mass flow-rates by means of sonic nozzles. Due to the specific mathematical 
relation between this caloric property and the various derivatives of the reduced Helmholtz 
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free energy  with respect to  and  (see Table 7.1), the experimental information contained 
in accurate speeds of sound is primarily useful for the development of multi-fluid mixture 
models. It also advantageously contributes to the description of other caloric properties, such 
as enthalpy, entropy, and isobaric heat capacity, which are needed (and of much more 
interest) for compressor and heat exchanger design in standard and advanced technical 
applications for natural gases, including pipeline transport, natural gas storage, and processes 
with liquefied natural gas.  

Figure 8.10 shows deviations between selected experimental isobaric enthalpy differences for 
the binary mixture methane–ethane and values calculated from the GERG-2004 formulation 
for temperatures ranging from 242 K to 349 K. These comparatively very accurate data were 
measured by Owren et al. (1996) for an ethane mole fraction of 15%. All of the measurements 
are represented by the new equation of state to within 0.3%, which is well in agreement with 
the estimated uncertainty of (0.2 – 0.5)%. 

Fig. 8.10 Percentage deviations of the experimental (isobaric) enthalpy differences measured by 
Owren et al. (1996) for the methane–ethane binary mixture from values calculated from the 
new equation of state (GERG-2004), Eqs. (7.1) – (7.10). 

Accurate and wide-ranging isochoric heat capacities of methane–ethane were measured by 
Mayrath and Magee (1989) in the gas and liquid regions for 31%, 50%, and 65% of ethane 
[the data complement the p T measurements carried out by Haynes et al. (1985) for the same 
mixture compositions (see also Fig. 8.4)]. The data cover temperatures from about 100 K to 
328 K and were measured along several isochores ranging from 2.7 mol dm 3 to 
25 mol dm 3 (corresponding to pressures up to 39 MPa). The isochoric heat capacities  
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Fig. 8.11 Percentage deviations of the experimental isochoric heat capacity data measured by 
Mayrath and Magee (1989) for the methane–ethane binary mixture from values calculated 
from the new equation of state (GERG-2004), Eqs. (7.1) – (7.10). 

measured for densities  13 mol dm 3 are described well within the experimental 
uncertainty of the data, estimated to be less than (0.5 – 2)%, for all measured compositions as 
shown in Fig. 8.11. Most of the available data measured at lower densities (see the plot in 
Fig. 8.11 for  12 mol dm 3) are also represented to within 2% by the GERG-2004 
formulation. The deviations rise (but are still acceptable) near critical state conditions. A 
comparatively large scatter in the deviations is observed for the isochoric heat capacities 
measured at 50% of ethane in the plot for densities  12 mol dm 3. The deviations exceed 
2% even at ordinary state conditions (gas phase) for the measurements along the isochores at 
the two lowest densities of about 6 mol dm 3 and 3.7 mol dm 3. However, none of the 
previous equations of state (not shown here) is able to describe these data any better than the 
GERG-2004 formulation, perhaps indicating an increased uncertainty for these particular 
measurements. The average absolute deviation for all of the 50% data amounts to about 
1.17%, whereas average absolute deviations of approximately 0.54% and 0.61% are obtained 
for the data at 31% and 65% of ethane.

Deviations between gas phase isobaric heat capacities of Wirbser et al. (1996) for the 
methane–ethane mixture and values calculated from the new equation of state are shown in  
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Fig. 8.12 Percentage deviations of the experimental isobaric heat capacity data measured by Wirbser 
et al. (1996) for the methane–ethane binary mixture from values calculated from the new 
equation of state (GERG-2004), Eqs. (7.1) – (7.10). 

Fig. 8.13 Percentage deviations of selected experimental isobaric heat capacity data measured by van 
Kasteren and Zeldenrust (1979) for the methane–ethane binary mixture from values 
calculated from the new equation of state (GERG-2004), Eqs. (7.1) – (7.10), and the cubic 
equation of state of Peng and Robinson (1976). 

8.1   The Representation of ... Mixtures of the Natural Gas Main Constituents 
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Fig. 8.12 for temperatures ranging from 250 K to 350 K. The data were measured at 15% of 
ethane covering pressures up to 30 MPa and are represented by the GERG-2004 formulation 
to within (1 – 2)%. The uncertainty of these data is estimated to be not better than 2% due to 
considerable inconsistencies observed for all but the 300 K isotherm. This is also supported 
by the fact that both the AGA8-DC92 equation as well as the mixture model of Lemmon and 
Jacobsen (1999) yield very similar results (not shown here). Deviations between selected 
experimental isobaric heat capacities of methane–ethane in the liquid phase and values 
calculated from the GERG-2004 formulation and the cubic equation of state of Peng and 
Robinson (1976) are shown in Fig. 8.13. The data were measured by van Kasteren and 
Zeldenrust (1979) at 29% of ethane and are represented by the new equation of state well 
within 1%, whereas the cubic equation of Peng and Robinson (1976) shows deviations from 
the measurements of up to 5%. 

Methane–Carbon Dioxide and Methane–Propane 

Deviations between selected speed of sound data for the binary mixtures methane–
carbon dioxide and methane–propane and values calculated from the GERG-2004 formulation 
are presented in Fig. 8.14. Except for the measurements of Estela-Uribe (1999) for methane–
carbon dioxide, and the data of Ingrain et al. (1993) and Trusler et al. (1993) for methane–
propane, the available measurements are limited to pressures below 11 MPa over the 
complete measured temperature range. At temperatures below 350 K, none of the available 
accurate data sets contain measurements above this maximum pressure81. These limitations do 
not only complicate the development of accurate binary equations, but also influence the 
description of natural gases containing comparatively high fractions of carbon dioxide or 
propane at elevated pressures. Thus, for future developments, it would be very worthwhile to 
measure accurate speeds of sound for these (and other) binary mixtures at pressures up to at 
least 20 MPa over wide ranges of temperature (see also Sec. 6.1).

The most accurate and wide-ranging speeds of sound for methane–carbon dioxide were 
measured by Estela-Uribe (1999) at 20% of carbon dioxide, and for methane–propane by 
Trusler et al. (1993) at 15% of propane. The measurements of Estela-Uribe (1999) cover 
temperatures from 200 K to 450 K and pressures up to 17 MPa82 and are all represented by 
the new equation of state with very low deviations of less than 0.03%. Trusler et al. (1993) 

81  Although the data of Ingrain et al. (1993) cover pressures up to 17 MPa for wide ranges of 
temperature, they are not very useful for the development of an accurate wide-ranging equation of 
state. As claimed by the authors, the uncertainty in speed of sound ranges from 0.1% at room 
temperature to 0.3% at temperatures below 233 K. A comparison with the measurements of 
Younglove et al. (1993) for the same mixture composition (10% propane), known to be more 
accurate, reveals that the assessment of the authors is likely to be rather optimistic. 

82  The speeds of sound at 200 K were measured for pressures up to 0.8 MPa, below the vapour-liquid 
phase boundary exhibiting a maximum temperature of approximately 220 K at about 5.5 MPa. 
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measured speeds of sound for temperatures ranging from 280 K to 375 K at pressures up to 
13 MPa. The data are represented by the new equation of state well within 0.1% (the average 
absolute deviation of all the data amounts to 0.027%).  

Further speed of sound data (with an estimated uncertainty of less than 0.1%) were measured 
by Younglove et al. (1993) for mixtures of methane–carbon dioxide and methane–propane at 
carbon dioxide concentrations of 5%, 15%, and 30%, and 10% of propane. Most of these data 
are well represented by the GERG-2004 formulation with deviations of less than 0.1% as 
shown in Fig. 8.14. Considerably higher deviations appear at 250 K for the methane–
carbon dioxide mixture containing 30% of carbon dioxide, corresponding to a comparatively 
low reduced temperature of T Tr 114. . Deviations between the data measured along this 
isotherm and values calculated from the new equation of state deviate by more than 0.3% at 
pressures above 8 MPa. However, as no other accurate speeds of sound are available for this 
particular composition and due to the comparatively low reduced temperature, this is not a 
severe problem. Moreover, when investigating the characteristics of the deviations between 
the data and values calculated from the new equation of state at higher temperatures 
(including isotherms not shown in Fig. 8.14), which reveals some inconsistency for different 
temperatures, it seems that these measurements might be associated with an increased 
uncertainty. None of the equations developed during the optimisation and fitting process was 
able to describe all of the measurements considerably better than the final equation.

For any mixture composition, the previous equations of state generally yield worse results for 
both binary systems. Values calculated from the AGA8-DC92 equation deviate from the 
experimental speeds of sound for methane–carbon dioxide by more than 0.2%, not only for 
the data for the mixture containing 15% of carbon dioxide as shown in Fig. 8.14, but also for 
5% and especially for the very accurate measurements of Estela-Uribe (1999) at 20% of 
carbon dioxide. Values calculated from the mixture model of Lemmon and Jacobsen (1999) 
clearly exceed deviations of 0.1% over wide temperature and pressure ranges as exemplified 
for the 15% carbon dioxide data. Both previous equations are not able to describe the data for 
the mixture containing 30% of carbon dioxide better than the new equation of state. 

Values calculated from the AGA8-DC92 equation of state deviate from the methane–propane 
measurements of Trusler et al. (1993) at 15% propane by more than 0.3% at 280 K. The 
AGA8-DC92 equation is not even able to describe the 10% propane data of Younglove et al.
(1993) as accurately as the new equation of state (see Table A2.1 of the appendix). The model 
of Lemmon and Jacobsen (1999) exceeds 0.1% and reaches a maximum deviation of about 
0.2% at 300 K. This model is not even able to accurately describe the speeds of sound at 
higher temperatures as shown in Fig. 8.14. 
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Fig. 8.15 Percentage deviations of the experimental isochoric heat capacity data measured by Magee 
(1995) for the carbon dioxide–ethane binary mixture from values calculated from the new 
equation of state (GERG-2004), Eqs. (7.1) – (7.10). 

Carbon Dioxide–Ethane 

Isochoric heat capacities were measured by Magee (1995) for the binary system 
carbon dioxide–ethane using the same experimental equipment as Mayrath and Magee (1989) 
for the measurements on methane–ethane (see above). The data were measured in the gas and 
liquid regions along several isochores ranging from about 2 mol dm 3 to 22 mol dm 3 over 
wide ranges of temperature for ethane mole fractions of 26%, 51%, and 75% (the pressures 
range up to 34 MPa). The uncertainty of the measurements is claimed by the authors to be less 
than 2% in the gas phase and 0.5% in the liquid phase. Most of the data are represented by the 
GERG-2004 formulation to within 2% as shown in Fig. 8.15. Higher deviations are obtained 
when approaching near critical state conditions. The average absolute deviations of the 
measurements amount to about 1% for 26% ethane and around 1.5% for 51% and 75% 
ethane. Similar to the measurements of Mayrath and Magee (1989) for methane–ethane 
discussed earlier, the data measured along the isochores at the lower densities seem to be 
associated with an increased uncertainty. However, the achieved accuracy in the 
representation of these isochoric heat capacities is very satisfactory. It should also be noted 
that the binary mixture carbon dioxide–ethane is taken into account only by using adjusted 
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reducing functions. The mixture model of Lemmon and Jacobsen (1999), using a generalised 
departure function for all of the considered binary mixtures, yields similar results (not shown 
here).

The examples above prove that the new equation of state achieves major and important 
improvements in the description of caloric properties of binary mixtures of the natural gas 
main constituents compared to both the AGA8-DC92 equation and the multi-fluid mixture 
model of Lemmon and Jacobsen (1999). Even the most accurate speed of sound data are 
represented by the new mixture model to within their very low experimental uncertainties 
over wide ranges of mixture conditions. This is also true for data of other caloric properties, 
particularly including those measured in the liquid phase, where the AGA8-DC92 equation is 
not applicable. Cubic equations of state deviate from accurate caloric data in the gas and 
liquid regions by several per cents (frequently considerably more than 5%) (see also 
Sec. 2.1.2). 

8.1.3 Vapour-Liquid Equilibrium Properties 

Aside from p T data and data of caloric properties measured in the homogeneous gas, liquid, 
and supercritical regions, experimental information for the vapour-liquid equilibrium was 
used in the development of the different binary equations as described in Sec. 7.10. As 
mentioned in Chap. 6, very accurate data at equilibrium conditions are available for saturated 
liquid densities of several binary (and also multi-component) mixtures. Experimental pTxy
data (i.e. simultaneous measurement of vapour pressure, saturation temperature, and 
equilibrium phase compositions) are in general associated with an increased uncertainty 
mainly resulting from errors in the measurement of the phase compositions (see Chap. 6).  

Saturated Liquid Densities 

Figure 8.16 shows deviations of experimental saturated liquid densities for the binary 
mixtures methane–nitrogen and methane–propane from values calculated from the GERG-
2004 formulation, the multi-fluid mixture model of Lemmon and Jacobsen (1999), and the 
cubic equation of state of Peng and Robinson (1976). The data were measured by Hiza et al.
(1977) covering wide ranges of composition, with temperatures from 95 K to 140 K. The 
uncertainty of the measurements is estimated to be  (0.1 – 0.2)%. All of the data (for 
both mixtures) are represented by the new equation of state with very low deviations of less 
than (0.1 – 0.15)%, which is well within the experimental uncertainty. The mixture model of 
Lemmon and Jacobsen (1999) achieves a comparable accuracy for the methane–nitrogen 
mixture, but the data for the methane–propane mixture are only represented to within  

(0.1 – 0.3)%. They show larger (but still acceptable) deviations for propane mole fractions of 
14%, 25%, and 70% at the lowest measured temperatures, indicating a stronger composition 
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dependence compared to the GERG-2004 formulation. Deviations of more than 10% for the 
methane–nitrogen data are obtained from the cubic equation of Peng and Robinson (1976), 
nearly independent of the mixture composition. For the methane–propane data, the cubic 
equation deviates from the measurements by approximately 5% to 10%, depending on the 
propane concentration. Thus, the deviations between values calculated from the cubic 
equation of Peng and Robinson (1976) and the data are 50 to 100 times larger than those 
obtained from the GERG-2004 formulation. The poor representation of saturated liquid 
densities (and also compressed liquid densities) by cubic equations of state can be observed 
for many binary and multi-component mixtures (see also Sec. 8.4.4).  

Fig. 8.17 Percentage deviations 100 100/ ( ) /exp calc exp  of the experimental saturated 
liquid densities measured by Hiza et al. (1977) for the methane–ethane binary mixture from 
values calculated from the new equation of state (GERG-2004), Eqs. (7.1) – (7.10), and the 
mixture model of Lemmon and Jacobsen (1999). 

Deviations between saturated liquid densities for methane–ethane and values calculated from 
the GERG-2004 formulation and the mixture model of Lemmon and Jacobsen (1999) for 
temperatures ranging from 105 K to 140 K and ethane mole fractions of 32%, 51%, and 65% 
are shown in Fig. 8.17. Values calculated from the new equation of state agree with the 
measurements of Hiza et al. (1977) to within (0.1 – 0.15)%. The model of Lemmon and 
Jacobsen (1999) shows a very similar representation, which is within (0.1 – 0.2)%, 
supporting the description of saturated liquid densities by the new mixture model.  
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The GERG-2004 formulation achieves a similar high accuracy in the description of saturated 
liquid densities as well for other binary mixtures, e.g. nitrogen–ethane and nitrogen–propane; 
for further details see Table A2.1 of the appendix. 

The pTxy Relation 

Figure 8.18 shows the representation of selected experimental vapour pressures for the binary 
mixture methane–nitrogen by the new equation of state at subcritical temperatures (91 K to 
100 K) and in the critical region of the mixture (150 K to 155 K). The displayed percentage 
deviations were calculated at a given temperature T and given composition x x  of the 
liquid phase (bubble point pressure calculation). The available binary data for this mixture 
cover the complete composition range for temperatures from between 78 K and 190 K (which 
is close to the critical temperature of pure methane) (see also Table 6.4). The GERG-2004 
formulation represents the most reliable measurements, assumed to be those of Parrish and 
Hiza (1973), Stryjek et al. (1974a), and McClure et al. (1976), to within (1 – 2)%, which 
agrees well with the experimental uncertainty of the data. Note that the uncertainty in vapour 
pressure is in general estimated to be p ps s  (1 – 3)% (see also Chap. 6). From the plots 
shown in Fig. 8.18 it is obvious that data measured by different authors deviate among one 
another by (partly) more than 2% or 3% at virtually the same mixture conditions in both the 
subcritical and critical regions of the mixture. Similar (or even worse) experimental situations 
are observed for most binary systems (see also the discussions below). Although the data 
situation for VLE properties of methane–nitrogen is (compared to other binary mixtures) very 
satisfactory, the poor consistency between data sets of different authors, and also within a 
single data set, complicates the development of equations of state for mixtures. These 
difficulties are compensated for to a certain extent when (much more) accurate experimental 
information is available for properties in the homogeneous gas, liquid, and supercritical 
regions, or for saturated liquid densities (see above). Nevertheless, due to the flexible 
structure of mixture models based on a multi-fluid approximations, the representation of 
binary pTxy data by such an equation of state strongly depends on the data sets chosen by the 
correlator used in the development of the equation. The use of “wrong” VLE measurements 
can adversely affect the description of data in the homogeneous region and vice versa. 

In the critical region of the mixture (at temperatures above the critical temperature of 
nitrogen), the cubic equation of state of Peng and Robinson (1976) yields quite similar results 
compared to the GERG-2004 formulation as shown for the 150 K isotherm in Fig. 8.18. At 
lower temperatures, values calculated from the cubic equation deviate significantly from the 
measurements by more than 2%, thus exceeding the uncertainty of the data. Even higher 
deviations of more than 5% are obtained for the mixture model of Lemmon and Jacobsen 
(1999).

8.1   The Representation of ... Mixtures of the Natural Gas Main Constituents 
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Fig. 8.18 Percentage deviations of selected experimental vapour pressures for the methane–nitrogen 
binary mixture from values calculated from the new equation of state (GERG-2004), 
Eqs. (7.1) – (7.10). Values calculated from the cubic equation of state of Peng and 
Robinson (1976) and the mixture model of Lemmon and Jacobsen (1999) are plotted for 
comparison at temperatures of 100 K and 150 K. 

As mentioned in Sec. 5.5.4 (see also Secs. 5.5.3 and 7.10), the vapour pressure at a given 
temperature and liquid phase composition is not the only VLE property of a pTxy data set that 
was used in the development (nonlinear fitting) of the binary equations of the new mixture 
model. Further (and experienced to also be important), experimental information can 
additionally be utilised by nonlinearly fitting the measured vapour phase composition. 
Deviations between experimentally determined vapour phase compositions and values 
calculated from the GERG-2004 formulation for given temperatures and liquid phase 
compositions are shown in Fig. 8.19 for the same mixture and data sets as in Fig. 8.18. Those 
data assumed to be the most reliable for this mixture (see above) are represented by the new 
equation of state with deviations of less than (0.5 – 1) mole-%, which is well in agreement 
with the experimental uncertainty of such measurements (as estimated from experience). 
Frequently, the scatter in a single data set significantly exceeds values of 1 mole-%, and 
deviations between data sets of different authors can even exceed values of 2 mole-% (or 
more) as shown in Fig. 8.19 for the data of Cines et al. (1953) and Janisch (2000c). Only the  
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Fig. 8.19 Deviations of selected experimental nitrogen mole fractions in the saturated vapour phase 
for the methane–nitrogen binary mixture from values calculated from the new equation of 
state (GERG-2004), Eqs. (7.1) – (7.10). Values calculated from the cubic equation of state 
of Peng and Robinson (1976) and the mixture model of Lemmon and Jacobsen (1999) are 
plotted for comparison at temperatures of 100 K and 150 K. 

best, i.e. most accurate and consistent, pTxy measurements are accurate to within (1 – 2)% in 
vapour pressure and (0.5 – 1) mole-% in vapour phase composition. Other authors are able to 
accurately measure the vapour pressure, but show inconsistencies in the measured vapour 
phase composition and vice versa. 

Compared to the GERG-2004 formulation, the behaviour of the cubic equation of Peng and 
Robinson (1976) is quite similar concerning the description of the measured vapour phase 
compositions for the temperatures shown in Fig. 8.19, whereas the mixture model of Lemmon 
and Jacobsen (1999) deviates by more than 1 mole-% from the most reliable data at 100 K.  

Percentage deviations between selected experimental vapour pressures of the binary mixture 
methane–ethane and values calculated from the GERG-2004 formulation are shown in 
Fig. 8.20 for temperatures in the critical region of the mixture. The deviation plots 
complement the comparisons previously made in Figs. 7.7 and 7.16, showing a pressure-
temperature and a pressure-composition diagram for methane–ethane including accurate  
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Fig. 8.20 Percentage deviations of selected experimental vapour pressures for the methane–ethane 
binary mixture from values calculated from the new equation of state (GERG-2004), 
Eqs. (7.1) – (7.10). Values calculated from the cubic equation of state of Peng and 
Robinson (1976) and the mixture model of Lemmon and Jacobsen (1999) are plotted for 
comparison at temperatures of 230 K, 250 K, and 270 K. 

experimental VLE measurements. Such total comparisons between VLE data and values 
calculated from equations of state are very useful for investigating the capabilities of 
equations of state in the description of the VLE behaviour of mixtures, especially when 
dealing with very poor data which only allow for a qualitative comparison. Similar to the 
binary mixture methane–nitrogen, the VLE data situation for methane–ethane, the second-
most important binary mixture for natural gas applications, is quite satisfactory. As mentioned 
in Sec. 7.7.3 and shown in Fig. 8.20, the new equation of state is able to represent the most 
accurate measurements with deviations of less than 2% over wide ranges of temperature and 
composition for both the subcritical and critical regions of the mixture. The cubic equation of 
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state of Peng and Robinson (1976) partly deviates from the measurements in the mixture 
critical region by more than 2% as displayed in Fig. 8.20. The same is valid for the mixture 
model of Lemmon and Jacobsen (1999) due to fitting other data with significant differences to 
the data shown here.

Aside from data measured at mixture subcritical and critical temperatures, a number of 
accurate measurements were carried out by Wichterle and Kobayashi (1972a) for methane 
concentrations ranging from about 90% to almost pure methane, focusing on the transition 
from subcritical to critical around temperatures of 190 K. These data are well represented by 
the GERG-2004 formulation to within 1%.

Fig. 8.21 Percentage deviations of selected experimental vapour pressures for the carbon dioxide–
ethane binary mixture from values calculated from the new equation of state (GERG-
2004), Eqs. (7.1) – (7.10). Values calculated from the cubic equation of state of Peng and 
Robinson (1976) and the mixture model of Lemmon and Jacobsen (1999) are plotted for 
comparison. 

As a full mixture model, the GERG-2004 formulation is not only able to accurately describe 
common VLE behaviour as shown for the examples discussed above, but also for mixtures 
exhibiting unusual phase behaviour, e.g. an azeotrope, as displayed for the binary mixture 
carbon dioxide–ethane in Figs. 8.21 and 8.22. Figure 8.21 shows percentage deviations 
between vapour pressure data of four different authors and values calculated from the new 
equation of state in the high temperature region where the disappearance of the azeotrope is  
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Fig. 8.22 Deviations of selected experimental carbon dioxide mole fractions in the saturated vapour 
phase for the carbon dioxide–ethane binary mixture from values calculated from the new 
equation of state (GERG-2004), Eqs. (7.1) – (7.10). Values calculated from the cubic 
equation of state of Peng and Robinson (1976) and the mixture model of Lemmon and 
Jacobsen (1999) are plotted for comparison. 

observed. For the temperature range displayed in the deviation plots, the azeotropic points 
appear in a narrow range of carbon dioxide mole fractions approximately between 69% and 
70%. The most reliable measurements of these authors are represented by the GERG-2004 
formulation to within (1 – 2)% (a few data points are obviously associated with increased 
uncertainties as can be deduced from the considerably large scatter in the respective 
deviations). The new mixture model also accurately describes the simultaneously measured 
vapour phase compositions as shown in Fig. 8.22. Typical deviations between experimental 
vapour phase compositions and values calculated from the new equation of state are within 

(0.5 – 1) mole-% for the data of Brown et al. (1988) and Fredenslund and Mollerup (1974), 
and within (1 – 2) mole-% for the measurements of Ohgaki and Katayama (1977). The latter 
seem to be associated with a higher uncertainty than those measured by Brown et al. (1988) 
and Fredenslund and Mollerup (1974), due to the larger scatter in the data as is obvious from 
the comparisons displayed in Figs. 8.21 and 8.22. Although the cubic equation of state of 
Peng and Robinson (1976) shows on average, compared to the GERG-2004 formulation, a 
similar representation of the selected measurements, the model of Lemmon and Jacobsen 
(1999) exhibits somewhat higher deviations from those data assumed to be the most accurate.  



233

8.2 The Representation of Thermal and Caloric Properties of 
Selected Binary Mixtures of Hydrocarbons from  
Ethane to n-Octane 

Most of the binary mixtures consisting of the hydrocarbons ethane, propane, n-butane, 
isobutane, n-pentane, isopentane, n-hexane, n-heptane, and n-octane, comprising a total of 36 
binary systems, are characterised by using only adjusted reducing functions. For the six 
binary mixtures composed of ethane, propane, n-butane, and isobutane, a generalised 
departure function is additionally used (see also Table 7.16). Several of the binary 
hydrocarbon systems are taken into account without any fitting but by using different 
combining rules as described in Secs. 5.2 and 7.10. This mainly concerns those binary 
hydrocarbon mixtures containing either isobutane or isopentane as one component (see also 
Fig. 7.14). 

8.2.1 The p T Relation in the Homogeneous Region 

Except for a few data sets covering mixture conditions in the homogeneous gas phase, the 
majority of p T data available for binary hydrocarbon mixtures was measured in the liquid 
phase ranging from atmospheric to moderate or elevated pressures and covering wide ranges 
of composition. A considerable amount of measurements is available for saturated liquid and 
saturated vapour densities, often being of questionable accuracy as will be shown in 
Sec. 8.2.3. The following examples focus on the representation of experimental 
(homogeneous) liquid phase densities by the new equation of state; for the description of the 
p T relation in the liquid phase of ternary hydrocarbon mixtures see Sec. 8.4.3. 

Ethane–Propane, Propane–n-Butane, and n-Butane–Isobutane 

Figure 8.23 shows percentage deviations of selected experimental liquid densities for various 
compositions of the binary mixture ethane–propane from values calculated from the GERG-
2004 formulation and the mixture model of Lemmon and Jacobsen (1999). The data measured 
by Parrish (1984) are represented by the new equation of state to within about (0.1 – 0.2)%, 
which is well within the targeted uncertainty defined for liquid phase densities. Larger 
deviations, ranging from 0.1% to slightly above 0.5%, are obtained from the model of 
Lemmon and Jacobsen (1999).

Experimental liquid densities for the binary mixtures propane–n-butane and n-butane–
isobutane and their percentage deviations from the GERG-2004 formulation and other multi-
fluid mixture models are shown in Figs. 8.24 and 8.25. The selected data cover wide ranges of 
temperature and composition and are in general represented by the new equation of state with 
low deviations of less than (0.1 – 0.15)%, including the recently published measurements of  
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Fig. 8.23 Percentage density deviations 100 100/ ( ) /exp calc exp  of selected 
experimental p T data measured by Parrish (1984) for the ethane–propane binary mixture 
from values calculated from the new equation of state (GERG-2004), Eqs. (7.1) – (7.10), 
and the mixture model of Lemmon and Jacobsen (1999). 

Kayukawa et al. (2005a), which were not available at the time the equation was developed. 
The data of Parrish (1986) seem to be more accurate than the measurements on ethane–
propane of Parrish (1984). A similar accurate description by the new equation of state is also 
achieved for compressed liquid densities available for the binary mixture propane–isobutane 
(not shown here). Typical deviations observed for this system are within (0.1 – 0.2)% over 
wide ranges of temperature and composition, and at pressures up to 35 MPa (see also 
Table A2.1 of the appendix). Note that the data of Kayukawa et al. (2005a), available for the 
three binary mixtures propane–n-butane, propane–isobutane, and n-butane–isobutane, were 
measured starting from pressures close to the saturation conditions. Additionally, saturated 
liquid densities were measured by the authors at the same temperatures and compositions as 
in the homogeneous region. These data are accurately represented by the GERG-2004 
formulation as well (typical deviations are within 0.2%).

Compared to the GERG-2004 formulation, the multi-fluid mixture model of Lemmon and 
Jacobsen (1999) yields quite similar results for the n-butane–isobutane mixture (not shown 
here), but shows deviations ranging from 0.1% to right below 0.3% for propane–n-butane,  
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Fig. 8.24 Percentage density deviations of selected experimental p T data for the propane–n-butane 
binary mixture from values calculated from the new equation of state (GERG-2004), 
Eqs. (7.1) – (7.10), and the mixture model of Lemmon and Jacobsen (1999). 

8.2   The Representation of ... Mixtures of Hydrocarbons from Ethane to n-Octane 
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Fig. 8.25 Percentage density deviations of selected experimental p T data for the n-butane–
isobutane binary mixture from values calculated from the new equation of state (GERG-
2004), Eqs. (7.1) – (7.10), and the mixture model of Miyamoto and Watanabe (2003). 

whereas the new equation represents the measurements to within 0.1% as shown in 
Fig. 8.24. The recent multi-fluid mixture model of Miyamoto and Watanabe (2003) yields 
quite similar results for propane–n-butane (not shown here), but shows larger deviations than 
the GERG-2004 formulation for the n-butane–isobutane mixture as displayed in Fig. 8.25. 
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The apparent higher uncertainties of the other mixture models are caused by fitting different 
data sets. The models do not have higher uncertainties, but they show a different description. 

n-Pentane–n-Hexane and n-Hexane–n-Heptane 

Measurements are generally scarce for liquid phase densities of binary mixtures consisting of 
the “heavier” hydrocarbons n-pentane, n-hexane, n-heptane, and n-octane. Although covering 
the entire composition range, several of the available data are of low value for the 
development of wide-ranging mixture models, since they were only measured at atmospheric 
pressure and ambient temperatures of 293 K or 298 K [e.g. Chevalier et al. (1990)], or in a 
comparatively narrow temperature range from 283 K to 313 K [Goates et al. (1981)]. Data 
measured at atmospheric pressure but over a wider range of temperature from 273 K to 363 K 
using a vibrating tube densimeter were very recently reported by Ramos-Estrada et al. (2006) 
for the binary mixtures n-pentane–n-hexane, n-pentane–n-heptane, and n-hexane–n-heptane. 
Figure 8.26 exemplifies the representation of the n-hexane–n-heptane data by the GERG-2004 
formulation, which is able to describe all measurements with low deviations of less than 

(0.1 – 0.2)%. The data measured by Ramos-Estrada et al. (2006) for n-pentane–n-hexane are 
well represented to within (0.1 – 0.3)%, and most of those measured for n-pentane–
n-heptane are within (0.1 – 0.5)% (both not shown here).

Fig. 8.26 Percentage density deviations 100 100/ ( ) /exp calc exp  of the experimental 
p T data measured by Ramos-Estrada et al. (2006) for the n-hexane–n-heptane binary 
mixture from values calculated from the new equation of state (GERG-2004),  
Eqs. (7.1) – (7.10). 
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Data measured over wide ranges of mixture conditions (temperature, pressure, and 
composition) were recently reported by Pecar and Dolecek (2003) for binary (and ternary) 
mixtures consisting of n-pentane, n-hexane, and n-heptane. The data were measured with a 
vibrating tube densimeter at 298 K, 323 K, and 348 K, and in the pressure range from 
0.1 MPa to 40 MPa covering a wide range of distinct compositions. The uncertainty in density 
of these measurements is estimated by the authors to be less than 1%. Selected data for the 
binary mixtures n-pentane–n-hexane and n-hexane–n-heptane and their percentage deviations 
from the GERG-2004 formulation are shown in Fig. 8.27. Although the measurements were 
not available at the time the new equation of state was developed, they are all represented by 
the GERG-2004 formulation to within low deviations of (0.1 – 0.3)%. The data measured for 
the binary mixture n-pentane–n-heptane are all represented to within (0.1 – 0.5)% (not 
shown here). The average absolute deviations amount to 0.098% for the data for n-pentane–
n-hexane, 0.309% for n-pentane–n-heptane, and 0.078% for n-hexane–n-heptane (see also 
Table A2.1 of the appendix).

A similar accurate description of liquid phase densities by the new equation of state is also 
achieved for the binary hydrocarbon mixtures n-hexane–n-octane and n-heptane–n-octane, for 
which, however, only density data measured at atmospheric pressure are available (see also 
Table A2.1 of the appendix). 

8.2.2 Caloric Properties in the Homogeneous Region 

Measurements of caloric properties of binary mixtures composed of other than the natural gas 
main constituents are scarce. Moreover, the few caloric data available for binary mixtures 
consisting of secondary natural gas components (including binary hydrocarbon mixtures) are 
limited in the covered mixture conditions (see also Table 6.4).  

Accurate isochoric heat capacities were measured by Duarte-Garza and Magee (1999) in the 
liquid phase of the binary hydrocarbon mixture propane–isobutane for 30% and 70% of 
isobutane. The uncertainty in isobaric heat capacity is claimed by the authors to be 0.7%. As 
shown in Fig. 8.28, the GERG-2004 formulation represents the measurements well within 
deviations of (1 – 1.5)%, which is satisfactory and in good agreement with the accurate 
description achieved for the heat capacity measurements of Mayrath and Magee (1989) for 
methane–ethane and of Magee (1995) for carbon dioxide–ethane using the same experimental 
equipment (see also Figs. 8.11 and 8.15).  

8.2.3 Vapour-Liquid Equilibrium Properties 

Whereas the data situation for VLE properties of important binary mixtures of natural gas 
main constituents is quite satisfactory (see Sec. 8.1.3), many of the available VLE data for  

8.2   The Representation of ... Mixtures of Hydrocarbons from Ethane to n-Octane 



240 8   Comparison of the New Equation of State (GERG-2004) with Experimental Data...

Fig. 8.28 Percentage deviations of the experimental isochoric heat capacity data measured by 
Duarte-Garza and Magee (1999) for the propane–isobutane binary mixture from values 
calculated from the new equation of state (GERG-2004), Eqs. (7.1) – (7.10). 

binary hydrocarbon mixtures are of comparatively poor quality. As mentioned before, 
experimental saturated liquid and saturated vapour densities are often associated with an 
increased uncertainty exceeding values of 1%. A comparatively large scatter in the 
measurements available for the pTxy relation is frequently observed, and data sets measured 
by different sources at virtually the same mixture conditions deviate from each other by 
several percents, complicating the development of accurate binary equations. For several 
binary systems only a few VLE data are available.  

Ethane–n-Butane and Ethane–Isobutane 

Selected experimental pTxy measurements for ethane–n-butane and their deviations from the 
GERG-2004 formulation are shown in Fig. 8.29. The most accurate and consistent data seem 
to be those of Benedict et al. (1942). The new equation of state represents the measured 
vapour pressures of these authors to within (0.5 – 1)% at subcritical temperatures as well as 
in the critical region of the mixture. In addition, the simultaneously measured vapour phase 
compositions are well described to within (0.5 – 1) mole-%. The data of Lhoták and 
Wichterle (1981) cover a wider range of composition but show a large scatter in the 
deviations for both the vapour pressures and vapour phase compositions. The data of Mehra 
and Thodos (1965) and Dingrani and Thodos (1978) are also obviously of poor quality 
regarding the measured vapour pressures, but show a better consistency in the simultaneously  
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Fig. 8.29 Representation of selected experimental vapour pressures and ethane mole fractions in the 
saturated vapour phase for the ethane–n-butane binary mixture by the new equation of state 
(GERG-2004), Eqs. (7.1) – (7.10): 100 p ps s/ = 100 ( ) /, , ,p p ps exp s calc s exp ,
100 yC H2 6

= 100 ( ), ,y yC H exp C H calc2 6 2 6
. Values calculated from the cubic equation of 

state of Peng and Robinson (1976) and the mixture model of Lemmon and Jacobsen (1999) 
are plotted for comparison at temperatures of 323 K and 363 K. 

measured vapour phase compositions, represented by the new equation of state to within 
(0.5 – 1.5) mole-%. Compared to the GERG-2004 formulation, the multi-fluid mixture 

model of Lemmon and Jacobsen (1999) exhibits a very similar description of the phase 
behaviour of this mixture at temperatures of 323 K and 363 K, whereas the cubic equation of 
state of Peng and Robinson (1976) yields slightly different and worse results. 

Comparisons between different VLE data measured by Besserer and Robinson (1973c) for the 
binary mixture ethane–isobutane and values calculated from the GERG-2004 formulation are 
shown in Figs. 8.30 and 8.31. The pTxy relation of this mixture was measured in the 
temperature range from 311 K to 394 K. In addition, the saturated liquid and saturated vapour 
densities were experimentally determined, thus providing a complete set of simultaneously 
measured VLE properties. The data are, however, of poor quality as is oftentimes seen for 
VLE data in the comparatively large scatter of the deviations for the different equilibrium 
properties. Most of the experimental vapour pressures are represented by the new equation of 
state to within 2%. Most of the measured vapour phase compositions are described to within 

(1 – 2) mole-%. Typical percentage deviations for saturated liquid densities are within  
(1 – 2)%. Those for saturated vapour densities are approximately twice as high.  

8.2   The Representation of ... Mixtures of Hydrocarbons from Ethane to n-Octane 
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Fig. 8.30 Representation of the experimental vapour pressures, ethane mole fractions in the saturated 
vapour phase, and saturated liquid densities measured by Besserer and Robinson (1973c) 
for the ethane–isobutane binary mixture by the new equation of state (GERG-2004), 
Eqs. (7.1) – (7.10): 100 p ps s/ = 100 ( ) /, , ,p p ps exp s calc s exp , 100 yC H2 6

=
100 ( ), ,y yC H exp C H calc2 6 2 6

, 100 / = 100 ( ) /exp calc exp . Values calculated 
from the cubic equation of state of Peng and Robinson (1976) and the mixture model of 
Lemmon and Jacobsen (1999) are plotted for comparison. 

Whereas the new equation of state is able to describe the data for different measured 
equilibrium properties with reasonable accuracy (taking into account the increased uncertainty 
of the measurements), both the cubic equation of state of Peng and Robinson (1976) and the 
multi-fluid mixture model of Lemmon and Jacobsen (1999) show all in all a less accurate 
description of the different properties. Values calculated from the cubic equation at 311 K and 
377 K deviate from the measured saturated liquid densities by clearly more than 5% or 10%. 
The model of Lemmon and Jacobsen (1999) shows considerably larger deviations for the 
measured vapour pressures, clearly exceeding values of 5% at 311 K for ethane mole fractions 
below 50%. 
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Fig. 8.31 Percentage deviations of the experimental saturated vapour densities measured by Besserer 
and Robinson (1973c) for the ethane–isobutane binary mixture from values calculated from 
the new equation of state (GERG-2004), Eqs. (7.1) – (7.10). Values calculated from the 
cubic equation of state of Peng and Robinson (1976) and the mixture model of Lemmon 
and Jacobsen (1999) are plotted for comparison. 

Fig. 8.32 Percentage deviations of selected experimental vapour pressures for the propane–isobutane 
binary mixture from values calculated from the new equation of state (GERG-2004), 
Eqs. (7.1) – (7.10). Values calculated from the mixture models of Lemmon and Jacobsen 
(1999) and Miyamoto and Watanabe (2003) are plotted for comparison at temperatures of 
273 K, 303 K, 355 K, and 394 K. 
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Fig. 8.33 Deviations of selected experimental propane mole fractions in the saturated vapour phase 
for the propane–isobutane binary mixture from values calculated from the new equation of 
state (GERG-2004), Eqs. (7.1) – (7.10). Values calculated from the mixture models of 
Lemmon and Jacobsen (1999) and Miyamoto and Watanabe (2003) are plotted for 
comparison at temperatures of 273 K, 303 K, 355 K, and 394 K. 

Binary Mixtures of Propane, n-Butane, and Isobutane 

Percentage deviations of selected experimental vapour pressures and vapour phase 
compositions for propane–isobutane from values calculated from the GERG-2004 
formulation are shown in Figs. 8.32 and 8.33. A wide ranging data set was reported by Hipkin 
(1966) covering the entire composition range at temperatures from 267 K to 394 K. The most 
accurate data set seems to be the one measured by VonNiederhausern and Giles (2001) 
covering temperatures from 322 K to 355 K, and showing very good consistency in both the 
experimental vapour pressures and the vapour phase compositions. The data are represented 
by the new equation of state with low deviations of less than (0.5 – 1)% for vapour pressures 
and less than (0.2 – 0.4) mole-% for vapour phase compositions. The vapour pressure data 
reported by Hipkin (1966), Hirata et al. (1970), Higashi et al. (1994), Lim et al. (2004), and 
Kayukawa et al. (2005b) seem to be associated with an increased uncertainty and are 
represented by the GERG-2004 formulation to within (1 – 3)% (except for a few points). 
The vapour pressures measured by these authors systematically deviate from each other by 
about 2% (or more) at nearly the same mixture conditions in the temperature range from  
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Fig. 8.34 Representation of selected experimental vapour pressures and propane mole fractions in the 
saturated vapour phase for the propane–n-butane binary mixture by the new equation of 
state (GERG-2004), Eqs. (7.1) – (7.10): 100 p ps s/ = 100 ( ) /, , ,p p ps exp s calc s exp ,
100 yC H3 8

= 100 ( ), ,y yC H exp C H calc3 8 3 8
.

299 K to 303 K. The experimental uncertainty in vapour phase composition of these authors 
seems to be in general not better than (1 – 2) mole-%. The representation of these 
measurements by the GERG-2004 formulation agrees well with this estimated uncertainty. 

Compared to the accurate description achieved by the GERG-2004 formulation for the pTxy
relation of propane–isobutane, the recent multi-fluid mixture model of Miyamoto and 
Watanabe (2003) yields a similar representation of the pTxy relation, whereas the model of 
Lemmon and Jacobsen (1999) shows a somewhat different representation of the selected 
vapour pressure data at subcritical temperatures as displayed in Fig. 8.32 due to fitting 
different data sets.

For the binary mixtures propane–n-butane and n-butane–isobutane, a similar accurate 
description of the pTxy relation is achieved by the GERG-2004 formulation as for propane–
isobutane, as shown in Figs. 8.34 and 8.35. Several of the selected data sets are obviously 
associated with an increased (but typical) uncertainty, thus limiting the achievable accuracy of 
any equation of state. The previous multi-fluid mixture models of Miyamoto and Watanabe 
(2003) and Lemmon and Jacobsen (1999) yield quite similar results (not shown here) for 
these two binary mixtures compared to the representation of the data by the new equation of 
state.

8.2   The Representation of ... Mixtures of Hydrocarbons from Ethane to n-Octane 
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Fig. 8.35 Representation of selected experimental vapour pressures and isobutane mole fractions in 
the saturated vapour phase for the n-butane–isobutane binary mixture by the new equation 
of state (GERG-2004), Eqs. (7.1) – (7.10): 100 p ps s/ = 100 ( ) /, , ,p p ps exp s calc s exp ,
100 yi-C H4 10

= 100 ( ), ,y yi-C H exp i-C H calc4 10 4 10
.

Other Binary Hydrocarbon Mixtures 

The representation of selected experimental pTxy data for the binary mixtures propane–
n-pentane, propane–n-heptane, and n-pentane–n-heptane by the GERG-2004 formulation is 
shown in Figs. 8.36 – 8.38. The comparisons exemplify the description of the pTxy relation by 
the new equation of state for binary hydrocarbon mixtures containing (or consisting of) the 
“heavier” hydrocarbons n-pentane, n-hexane, n-heptane, and n-octane. For instance, similar 
results as for the selected examples are also obtained for n-butane–n-hexane, n-butane–
n-heptane, n-butane–n-octane, n-pentane–n-octane, etc. 

Measurements are in general scarce and are often of comparatively poor quality for these 
binary hydrocarbon mixtures, such as the data of Sage and Lacey (1940) for propane–
n-pentane (see Fig. 8.36) and of Kay (1971) for propane–n-heptane (see Fig. 8.37). The 
selected experimental vapour pressures for these binary mixtures are represented by the new 
equation of state to within 3% for propane–n-pentane and 5% for propane–n-heptane. 
Deviations between experimental vapour phase compositions and values calculated from the 
GERG-2004 formulation are generally less than (2 – 3) mole-%. For propane–n-heptane, 
higher deviations between measured and calculated vapour phase compositions are observed 
at propane concentrations below 25%. Taking into account the obviously increased  
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Fig. 8.36 Representation of selected experimental vapour pressures and propane mole fractions in the 
saturated vapour phase measured by Sage and Lacey (1940) for the propane–n-pentane 
binary mixture by the new equation of state (GERG-2004), Eqs. (7.1) – (7.10): 
100 p ps s/ = 100 ( ) /, , ,p p ps exp s calc s exp , 100 yC H3 8

= 100 ( ), ,y yC H exp C H calc3 8 3 8
.

Values calculated from the cubic equation of state of Peng and Robinson (1976) are plotted 
for comparison. 

uncertainty in the measurements, the description of the pTxy relation of such binary 
hydrocarbon mixtures by the new equation of state is quite satisfactory, which is also 
supported by the fact that the cubic equation of state of Peng and Robinson (1976) yields on 
average comparable results.  

The measurements of Cummings et al. (1933) for n-pentane–n-heptane (see Fig. 8.38) are 
represented by the GERG-2004 formulation with deviations of less than (1 – 2)% for vapour 
pressures and of less than (1 – 2) mole-% for vapour phase compositions. The cubic 
equation of Peng and Robinson (1976) shows a very similar description of these 
measurements. 

All in all, the comparisons above have shown that the new equation of state describes liquid 
phase densities of binary hydrocarbon mixtures over wide ranges of temperature, pressure, 
and composition very accurately. Typical deviations are clearly within (0.1 – 0.5)%. In 
general, experimental vapour pressures are represented to within (1 – 3)% and vapour phase 
compositions are within (1 – 2) mole-%. Larger deviations (e.g. up to 5% or more for 
vapour pressures and up to 3 mole-% or more for vapour phase compositions) are 
occasionally observed for certain binary mixtures. In general, the low quality of the available 
data limits the achievable accuracy of the new mixture model (and any other equation).  

8.2   The Representation of ... Mixtures of Hydrocarbons from Ethane to n-Octane 
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Fig. 8.37 Representation of selected experimental vapour pressures and propane mole fractions in the 
saturated vapour phase measured by Kay (1971) for the propane–n-heptane binary mixture 
by the new equation of state (GERG-2004), Eqs. (7.1) – (7.10), and the cubic equation of 
state of Peng and Robinson (1976): 100 p ps s/ = 100 ( ) /, , ,p p ps exp s calc s exp ,
100 yC H3 8

= 100 ( ), ,y yC H exp C H calc3 8 3 8
.
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Fig. 8.38 Representation of the experimental vapour pressures and n-heptane mole fractions in the 
saturated vapour phase measured by Cummings et al. (1933) for the n-pentane–n-heptane 
binary mixture by the new equation of state (GERG-2004), Eqs. (7.1) – (7.10), and the 
cubic equation of state of Peng and Robinson (1976): 100 p ps s/ = 
100 ( ) /, , ,p p ps exp s calc s exp , 100 yn-C H7 16

= 100 ( ), ,y yn-C H exp n-C H calc7 16 7 16
.
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8.3 The Representation of Thermal Properties of Other Selected 
Binary Mixtures 

The comparisons compiled in the subsections below exemplify the accuracy achieved by the 
new mixture model for thermal properties of binary mixtures that do not fit into one of the 
previously discussed groups of binary mixtures. The following subsections focus on the 
representation of data for binary mixtures containing one (or two) of the secondary natural gas 
components hydrogen, oxygen, carbon monoxide, water, helium, or argon. 

8.3.1 The p T Relation in the Homogeneous Region 

Very accurate experimental gas phase densities are reported in the databank GERG TM7 
[Jaeschke et al. (1997)] for binary mixtures of the main natural gas components (methane, 
nitrogen, carbon dioxide, and ethane) with hydrogen, and for methane–carbon monoxide, 
nitrogen–carbon monoxide, and nitrogen–helium. These data cover temperatures ranging 
from 270 K to 350 K at pressures up to 30 MPa, and different ranges of composition (wide for 
CH4–H2, N2–H2, and N2–He, and limited for CH4–CO, N2–CO, CO2–H2, and C2H6–H2).
Most of these accurate data are represented by the GERG-2004 formulation to within  

(0.07 – 0.1)% as shown below for methane–hydrogen, which agrees well with the 
experimental uncertainties of the measurements. Higher maximum deviations are observed 
for only few data sets.

Density data from other sources (also including measurements in the liquid phase) are often 
associated with a considerably larger uncertainty, occasionally showing inconsistencies of 
more than 1% between data sets of different authors or even within a single series of 
measurements. 

Methane–Hydrogen 

The accurate description of the p T relation of hydrogen–hydrocarbon, nitrogen–hydrogen, 
and carbon dioxide–hydrogen binary mixtures is of considerable importance for the accurate 
description of natural gas–hydrogen mixtures containing a high mole fraction of hydrogen 
(e.g. 10% or 20%) (see also Sec. 8.4.1).

A wide ranging data set is available for methane–hydrogen, which is the most important 
binary mixture concerning the influence on the description of natural gas–hydrogen mixtures. 
As shown in Fig. 8.39, the GERG-2004 formulation represents (almost) all of the selected
experimental gas phase densities measured by Ruhrgas (1990) for methane–hydrogen to 
within low deviations of (0.07 – 0.1)% over wide ranges of temperature and pressure, and 
for all hydrogen mole fractions from 15% to 75%. In contrast to this very accurate  
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Fig. 8.39 Percentage density deviations of selected experimental p T data measured by Ruhrgas 
(1990) for the methane–hydrogen binary mixture from values calculated from the new 
equation of state (GERG-2004), Eqs. (7.1) – (7.10). Values calculated from the AGA8-
DC92 equation of Starling and Savidge (1992) are plotted for comparison. Bu: Burnett 
apparatus, Op: optical interferometry method. 

description, values calculated from the AGA8-DC92 equation of state deviate from the 
measurements by more than 0.1% at 270 K for the 25% and 75% hydrogen data, and at 290 K 
for the 75% hydrogen data. Taking a closer look at the deviation plots, even for the data 
measured on the 330 K isotherm, a considerably poorer composition dependence of the 
deviations can generally be observed for the AGA8-DC92 equation.  

8.3   The Representation of ... Other Selected Binary Mixtures 
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Fig. 8.40 Percentage density deviations of selected experimental p T data covering the 
homogeneous gas, liquid, and supercritical regions for the methane–hydrogen binary 
mixture from values calculated from the new equation of state (GERG-2004),  
Eqs. (7.1) – (7.10). 

Percentage deviations between experimental densities (covering the homogeneous gas, liquid, 
and supercritical regions) for methane–hydrogen at temperatures ranging from 130 K to 
230 K and values calculated from the GERG-2004 formulation are shown in Fig. 8.40. The 
data of Machado et al. (1988) represent the only measurements available at temperatures from 
130 K to 159 K covering a wide range of liquid and supercritical mixture state conditions. 
The data were measured for hydrogen mole fractions from about 8% to 91% and pressures up 
to around 100 MPa. Most of these measurements are represented by the new equation of state 
to within (0.5 – 2)%, which is quite satisfactory taking into account the comparatively low 
quality of the measurements compared to those present for gas phase densities at higher  
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Fig. 8.41 Percentage density deviations 100 100/ ( ) /exp calc exp  of selected 
experimental p T data for the methane–water binary mixture from values calculated from 
the new equation of state (GERG-2004), Eqs. (7.1) – (7.10). 

temperatures (see Fig. 8.39). Higher deviations are observed in the vicinity of the mixture 
phase boundary83. Typical deviations obtained for the measurements of Solbrig and Ellington 
(1963) for 91% of hydrogen (covering temperatures from 139 K to 422 K at pressures up to 
23 MPa), and of Jett et al. (1994) for approximately 5% of hydrogen (covering temperatures 
from 154 K to 273 K at pressures up to 68 MPa), are within (0.2 – 0.4)%.

Binary Mixtures Containing Water 

The accurate knowledge of the p T relation of gaseous mixtures containing water is of 
considerable importance in many technical applications. The presence of water is frequently 
encountered in natural gases, causing problems in the production, transmission, and 
distribution of natural gas, even though often only present in small amounts. Water is 
responsible for the undesired formation of ice and gas hydrates that can lead to a blockage of  

83  According to the authors, the measurements were carried out starting at pressures of about 
100 MPa, and were extended down to pressures just above the region of phase separation, or to 
lower pressures at high hydrogen concentrations. Therefore, all densities are assumed to be 
homogeneous. 
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254 8   Comparison of the New Equation of State (GERG-2004) with Experimental Data...

Fig. 8.42 Percentage density deviations 100 100/ ( ) /exp calc exp  of selected 
experimental p T data for the carbon dioxide–water binary mixture from values calculated 
from the new equation of state (GERG-2004), Eqs. (7.1) – (7.10). 

Fig. 8.43 Percentage density deviations 100 100/ ( ) /exp calc exp  of selected 
experimental p T data measured by Abdulagatov et al. (1998) for the n-pentane–water 
binary mixture from values calculated from the new equation of state (GERG-2004), 
Eqs. (7.1) – (7.10). 
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Fig. 8.44 Percentage density deviations 100 100/ ( ) /exp calc exp  of selected 
experimental p T data for the nitrogen–water binary mixture from values calculated from 
the new equation of state (GERG-2004), Eqs. (7.1) – (7.10). 

transport pipelines. There is also the risk of corrosion of pipes when weak acids are formed 
from sour gas constituents dissolved in water. Aside from nitrogen, oxygen, and carbon 
dioxide, water is one of the main constituents of typical combustion gases. Moreover, 
research is on-going aiming at the development of a technology that enables cost-effective 
and efficient medium to long-term storage of electrical energy based on compressed humid 
air. Accurate p T data (and data of other thermodynamic properties) for binary mixtures of 
natural gas main constituents and water, or secondary hydrocarbons and water are, however, 
generally scarce. This is also valid for binary mixtures of dry air components and water.  

Fig. 8.45 Percentage density deviations 100 100/ ( ) /exp calc exp  of selected 
experimental p T data measured by Japas and Franck (1985b) for the oxygen–water binary 
mixture from values calculated from the new equation of state (GERG-2004),  
Eqs. (7.1) – (7.10). 

8.3   The Representation of ... Other Selected Binary Mixtures 
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Figures 8.41 – 8.45 show percentage density deviations between selected measurements for 
methane–water, carbon dioxide–water, n-pentane–water, nitrogen–water, and oxygen–water, 
and values calculated from the GERG-2004 formulation. Sufficiently accurate data, measured 
using isochoric apparatuses, were reported by Joffrion and Eubank (1988) and Fenghour et al.
(1996a) for methane–water (see Fig. 8.41), and by Patel and Eubank (1988) and Fenghour et
al. (1996b) for carbon dioxide–water (see Fig. 8.42). The measurements cover wide 
composition ranges at temperatures from close to the saturation boundary up to about 700 K, 
and pressures up to 30 MPa (see Table A2.1 of the appendix for further details). Most of these 
data are represented by the new equation of state to within low deviations of (0.2 – 0.5)% as 
shown in Figs. 8.41 and 8.42.

Fig. 8.46 Percentage density deviations 100 100/ ( ) /exp calc exp  of selected 
experimental p T data measured by Fenghour et al. (1993) for the nitrogen–water binary 
mixture from values calculated from the new equation of state (GERG-2004),  
Eqs. (7.1) – (7.10). 

Considerably larger deviations are observed for the (less accurate) measurements of 
Abdulagatov et al. (1998) for n-pentane–water, for those of Japas and Franck (1985a) and 
Abdulagatov et al. (1993b) for nitrogen–water, and for the data of Japas and Franck (1985b) 
for oxygen–water as displayed in Figs. 8.43 – 8.45. The measurements of Japas and Franck 
(1985a, 1985b) cover the entire composition range at pressures up to about 300 MPa and are 
represented by the new equation of state to within (2 – 5)%. At lower temperatures and also 
along the vapour-liquid phase boundary of the respective mixtures (not shown here), the data 
are described almost to within the same range of percentage deviations. For nitrogen–water, a 
comparatively accurate data set is available measured by Fenghour et al. (1993) that 
complements the measurements of Japas and Franck (1985a) and Abdulagatov et al. (1993b) 
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discussed above. Deviations between selected measurements of this source and values 
calculated from the GERG-2004 formulation are displayed in Fig. 8.46. The data extend from 
temperatures near the phase boundary up to about 700 K and are well represented by the new 
equation of state with deviations of less than (0.5 – 0.7)% (except for one single point 
slightly above this range).

8.3.2 Vapour-Liquid Equilibrium Properties 

Many of the available data for thermal properties at vapour-liquid equilibrium states for 
binary mixtures containing one (or two) of the secondary natural gas components hydrogen, 
oxygen, carbon monoxide, water, helium, and argon are of comparatively poor quality. 
Likewise for binary hydrocarbon mixtures, experimental saturated liquid and saturated vapour 
densities are often associated with an increased uncertainty. The development of accurate 
binary equations is complicated due to the comparatively large scatter in the measurements 
available for the pTxy relation and inconsistencies between data sets measured by different 
authors at virtually the same mixture conditions. Only a few VLE data are available for 
several binary systems.  

Methane–n-Octane

Figure 8.47 shows percentage deviations between selected experimental saturated liquid 
densities for methane–n-octane and values calculated from the GERG-2004 formulation. The 
data were measured by Kohn and Bradish (1964) and cover n-octane mole fractions from 53% 
to 97% and temperatures from 223 K to 423 K. Whereas the new equation of state is able to 
represent all of the measurements within deviations of (0.5 – 0.8)%, values calculated from 
the cubic equation of state of Peng and Robinson (1976) significantly deviate from the 
measurements. As shown in Fig. 8.47, the deviations obtained from the cubic equation range 
from about 2% up to approximately 6%.  

n-Heptane–Hydrogen 

Experimental VLE data for binary mixtures containing hydrogen are scarce and often of poor 
quality. Such mixtures are characterised by a strongly increasing critical pressure when 
temperature decreases. As an example, Fig. 8.48 shows deviations of the experimental vapour 
pressures and vapour phase compositions of Peter and Reinhartz (1960) for n-heptane–
hydrogen from values calculated from the GERG-2004 formulation. The measurements cover 
pressures up to about 78 MPa at 424 K and up to 39 MPa at 499 K. The new equation of state 
represents the data with comparatively large deviations of up to about 20%. Deviations 
between the corresponding vapour phase compositions and values calculated from the GERG- 

8.3   The Representation of ... Other Selected Binary Mixtures 



258 8   Comparison of the New Equation of State (GERG-2004) with Experimental Data...

Fig. 8.47 Percentage deviations 100 100/ ( ) /exp calc exp  of the experimental saturated 
liquid densities measured by Kohn and Bradish (1964) for the methane–n-octane binary 
mixture from values calculated from the new equation of state (GERG-2004),  
Eqs. (7.1) – (7.10), and the cubic equation of state of Peng and Robinson (1976). 

Fig. 8.48 Representation of the experimental vapour pressures and hydrogen mole fractions in the 
saturated vapour phase measured by Peter and Reinhartz (1960) for the n-heptane–
hydrogen binary mixture by the new equation of state (GERG-2004), Eqs. (7.1) – (7.10): 
100 p ps s/ = 100 ( ) /, , ,p p ps exp s calc s exp , 100 yH2

= 100 ( ), ,y yH exp H calc2 2
.
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Fig. 8.49 Representation of selected experimental vapour pressures and argon mole fractions in the 
saturated vapour phase for the methane–argon binary mixture by the new equation of state 
(GERG-2004), Eqs. (7.1) – (7.10): 100 p ps s/ = 100 ( ) /, , ,p p ps exp s calc s exp , 100 yAr =
100 ( ), ,y yAr exp Ar calc . Values calculated from the cubic equation of state of Peng and 
Robinson (1976) are plotted for comparison at temperatures of 123 K and 151 K. 

Fig. 8.50 Representation of the experimental vapour pressures and carbon monoxide mole fractions 
in the saturated vapour phase measured by Christiansen et al. (1973) for the 
carbon monoxide–argon binary mixture by the new equation of state (GERG-2004), 
Eqs. (7.1) – (7.10): 100 p ps s/ = 100 ( ) /, , ,p p ps exp s calc s exp , 100 yCO =
100 ( ), ,y yCO exp CO calc . Values calculated from the cubic equation of state of Peng and 
Robinson (1976) are plotted for comparison at temperatures of 123 K and 137 K. 

8.3   The Representation of ... Other Selected Binary Mixtures 
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2004 formulation range from below 1 mole-% to more than 5 mole-%. The poor data 
situation for this binary mixture (and others) limits the achievable accuracy of any mixture 
equation. Considerably larger deviations are obtained from the cubic equation of state of Peng 
and Robinson (1976) (not shown here) using the binary interaction parameters taken from the 
literature [Knapp et al. (1982)].

Methane–Argon and Carbon Monoxide–Argon 

Figure 8.49 displays the description of the pTxy relation for the binary mixture methane–
argon obtained from the GERG-2004 formulation. The selected experimental vapour 
pressures are represented by the new equation of state to within (1 – 3)% for subcritical 
temperatures as well as in the mixture critical region. As frequently observed, the data show a 
comparatively large scatter among themselves and between different authors. Typical 
deviations between the corresponding vapour phase compositions and values calculated from 
the GERG-2004 formulation are within (0.5 – 1) mole-%. All in all, the description achieved 
by the new equation of state is quite satisfactory and supported by the cubic equation of state 
of Peng and Robinson (1976) yielding quite similar results. The same is true for the 
description of the pTxy relation of carbon monoxide–argon as shown in Fig. 8.50. Here, both 
the GERG-2004 formulation and the cubic equation of Peng and Robinson (1976) represent 
the selected experimental vapour pressures with deviations of less than about 1%. The 
corresponding vapour phase compositions are represented by both equations to within  

(0.5 – 1.5) mole-%.

Binary Mixtures of the Air Components Nitrogen, Oxygen, and Argon 

Wide-ranging and comparatively accurate pTxy data sets are available for binary mixtures of 
the air components nitrogen, oxygen, and argon. Figures 8.51 – 8.53 show deviations between 
a number of selected pTxy data (vapour pressures and vapour phase compositions) for 
nitrogen–oxygen, nitrogen–argon, and oxygen–argon, and values calculated from the GERG-
2004 formulation. The sum of all measurements covers wide ranges of temperature and the 
entire composition range at subcritical conditions as well as in the mixture critical region. 
Most of the selected experimental vapour pressures are well represented by the new equation 
of state to within (1 – 3)%. The most accurate vapour pressure data are represented with low 
deviations of less than (0.5 – 1)%. The measured vapour phase compositions of the three 
binary mixtures are also very accurately described by the new equation. Typical deviations 
between the most consistent data and values calculated from the GERG-2004 formulation are 
less than (0.5 – 1) mole-%. All in all, the achieved description of the pTxy relation of the 
three binary mixtures nitrogen–oxygen, nitrogen–argon, and oxygen–argon is very 
satisfactory.
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Fig. 8.51 Representation of selected experimental vapour pressures and nitrogen mole fractions in 
the saturated vapour phase for the nitrogen–oxygen binary mixture by the new equation of 
state (GERG-2004), Eqs. (7.1) – (7.10): 100 p ps s/ = 100 ( ) /, , ,p p ps exp s calc s exp ,
100 yN2

= 100 ( ), ,y yN exp N calc2 2
. Values calculated from the mixture model of 

Lemmon et al. (2000) are plotted for comparison at temperatures of 80 K and 120 K. 

Fig. 8.52 Representation of selected experimental vapour pressures and nitrogen mole fractions in 
the saturated vapour phase for the nitrogen–argon binary mixture by the new equation of 
state (GERG-2004), Eqs. (7.1) – (7.10): 100 p ps s/ = 100 ( ) /, , ,p p ps exp s calc s exp ,
100 yN2

= 100 ( ), ,y yN exp N calc2 2
. Values calculated from the mixture model of 

Lemmon et al. (2000) are plotted for comparison. 
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Fig. 8.53 Representation of selected experimental vapour pressures and argon mole fractions in the 
saturated vapour phase for the oxygen–argon binary mixture by the new equation of state 
(GERG-2004), Eqs. (7.1) – (7.10): 100 p ps s/ = 100 ( ) /, , ,p p ps exp s calc s exp , 100 yAr =
100 ( ), ,y yAr exp Ar calc . Values calculated from the mixture model of Lemmon et al.
(2000) are plotted for comparison at temperatures of 90 K and 120 K. 

A very similar description is obtained from the multi-fluid mixture model of Lemmon et al.
(2000), which uses a short generalised departure function composed of two polynomial terms 
(see Table 5.2) in addition to the reducing functions for density and temperature. In 
comparison, the description of thermodynamic properties of mixtures of air components by 
the new mixture model is (currently) only based on adjusted reducing functions for the 
respective binary mixtures. The already achieved quite accurate description of the pTxy
relation for these (and also other) mixtures proves the suitability of the used reducing 
functions [Eqs. (7.9) and (7.10); see also Sec. 5.2] for use in multi-fluid mixture models84.

84  The influence of the reducing functions for density and temperature in the description of 
thermodynamic properties of mixtures is considerably higher than the contribution of a departure 
function (see also Secs. 5.1 – 5.3). In general, the use of a departure function enables further 
improvement in the description of very accurate gas phase and gas-like supercritical densities and 
speeds of sound at reduced temperatures T T/ .r 1 4, of liquid phase densities, and of pTxy data at 
low temperatures. For instance, whereas accurate gas phase densities are represented to within 

0.1% using a departure function, deviations of less than (0.1 – 0.3)% are typically observed 
without the use of a departure function. Similar behaviour is obtained for accurate liquid phase 
densities.
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8.4 The Representation of Thermal and Caloric Properties of 
Natural Gases, Similar Gases, and Other Multi-Component 
Mixtures 

As a multi-fluid mixture model, the GERG-2004 formulation is based on accurate 
fundamental equations for the considered pure components and equations developed for the 
respective binary mixtures (see Chaps. 5 and 7). This allows for an accurate description of the 
thermodynamic properties of natural gases, similar gases, and other multi-component 
mixtures over a wide range of compositions. The basis for the development of the new 
equation of state are experimental data for thermal and caloric properties of binary mixtures. 
Data for natural gases and other multi-component mixtures are only used for comparisons (no 
multi-component mixture data were used for the development). 

The quality of the new equation of state in the description of thermal and caloric properties of 
various types of natural gases, similar gases, and other multi-component mixtures is presented 
in the following subsections. The discussions comprise comparisons with data for ordinary 
natural gas mixtures, natural gases rich in methane, nitrogen, carbon dioxide, ethane, or 
hydrogen, as well as rich natural gases, LNG-like mixtures, pure hydrocarbon mixtures, and 
others.

8.4.1 The p T Relation in the Homogeneous Gas Region 

As described in Sec. 6.2, a huge amount of the p T measurements is available for natural 
gases and similar mixtures covering temperatures from 270 K to 350 K at pressures up to 
about 30 MPa. Comparatively few (but accurate) data were measured at temperatures below 
270 K. Together with the accurate and wide ranging data for important binary mixtures 
strongly related to natural gases, such as methane–nitrogen and methane–ethane, the present 
data situation allows for a well-founded estimation of the uncertainty in gas phase densities at 
temperatures below 270 K.  

Most of the measurements used for the following comparisons were taken from the databank 
GERG TM7 of Jaeschke et al. (1997), comprising accurate density data for synthetic multi-
component mixtures, simulated and true natural gases, and natural gases with different 
admixtures (i.e. natural gases diluted or enriched with one or more natural gas components). 
The majority of these data were measured at Ruhrgas using an optical interferometry method 
(Op) or a Burnett apparatus (Bu). The uncertainty in density of these measurements is 
generally estimated to be  (0.07 – 0.1)%. A few very accurate density data were 
measured with a two-sinker densimeter (GDMA) at pressures up to about 8 MPa. For these 
measurements, the uncertainty in density is estimated to be less than 0.03%. 

8.4   The Representation of ... Natural Gases, Similar Gases, and Other ... Mixtures 
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Table 8.1 Molar compositions of the round-robin natural gasesa

Mixture Composition (mole-%) 
 CH4 N2 CO2 C2H6 C3H8 n-C4 i-C4 n-C5 i-C5 n-C6

NIST1 96.522 0.260 0.596 1.819 0.460 0.101 0.098 0.032 0.047 0.066
NIST2 90.672 3.128 0.468 4.528 0.828 0.156 0.104 0.044 0.032 0.039
RG2 85.906 1.007 1.495 8.492 2.302 0.351 0.349 0.048 0.051 –
GU1 81.441 13.465 0.985 3.300 0.605 0.104 0.100 – – –
GU2 81.212 5.702 7.585 4.303 0.895 0.152 0.151 – – –
a The mixtures were prepared in two batches (one for laboratories in Europe and one for those in the 

U.S.). The values given here belong to the batch distributed to laboratories in Europe. The minor 
differences in the compositions between the two batches have no influence on the representation of
the p T measurements by equations of state. For the exact molar compositions of the different data 
sets see Table A2.3 of the appendix. 

Table 8.2 Approximate molar compositions of selected synthetic multi-component mixtures, true 
natural gases, natural gases with different admixtures, and simulated rich natural gas 
mixturesa

Mixture Composition (mole-%) 
 CH4 N2 CO2 C2H6 C3H8 n-C4 i-C4 n-C5 i-C5 n-C6 H2 CO

D17 84.78 – 2.01 8.92 3.05 1.24 – – – – – –
D18 61.77 12.66 12.60 12.97 – – – – – – – –
D21b 66.09 13.13 11.06 9.71 – – – – – – – –
N60c 82.52 11.73 1.11 3.46 0.76 0.15 0.10 0.04 0.03 0.02 – –
N61c,d 98.27 0.89 0.07 0.52 0.16 0.03 0.03 0.01 0.01 0.01 – –
N72e 73.50 9.93 1.34 3.60 0.77 0.15 0.10 0.04 0.03 0.02 9.49 0.91
N108f 79.95 1.13 1.02 16.01 1.40 0.26 0.13 0.03 0.03 0.02 0.01 –
N115g 81.53 11.81 1.19 2.83 0.62 0.21 0.01 0.07 0.01 0.02 – –
N116h 28.89 28.00 2.02 0.84 0.16 0.07 – 0.03 0.01 0.01 26.99 13.00
QUINT 80.04 9.95 1.99 5.00 3.02 – – – – – – –
RNG3 59.00 4.99 5.99 18.00 8.02 3.30 – 0.49 – 0.21 – –
RNG5 63.98 2.02 7.99 11.97 10.01 3.31 – 0.51 – 0.20 – –
a For the exact molar compositions of the mixtures see Table A2.3 of the appendix. 
b The mixture contains a small fraction of oxygen. 
c The mixture contains small fractions of n-heptane, n-octane, and helium. 
d The mixture N62 has the same composition as N61. These two series of measurements are referred 

to as “N61/62” in the text. 
e The mixture contains about 0.1 mole-% of oxygen and small fractions of n-heptane, n-octane, and 

n-nonane. The mixtures N73 and N74 have the same composition as N72. These three series of
measurements are referred to as “N72/73/74” in the text. 

f The mixture contains small fractions of n-heptane, n-octane, n-nonane, hydrogen, and helium. 
g The mixture contains about 1.7 mole-% of oxygen and a small fraction of n-heptane. 
h The mixture contains a small fraction of n-heptane. 
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A number of data exist for a selection of five simulated natural gases measured in a round-
robin series of p T measurements [see Magee et al. (1997)] performed by different 
laboratories using five different experimental techniques. The gases are designated by 
“NIST1”, “NIST2”, “RG2”, “GU1”, and “GU2”. They cover the range of compositions 
normally encountered in gas industry operations in North America and in Europe. Each 
mixture was prepared gravimetrically to the (approximate) molar compositions given in 
Table 8.1. Aside from the measurements carried out at Ruhrgas, further reliable data were 
measured by Magee et al. (1997) and Hwang et al. (1997b) using a Burnett apparatus. 
Measurements that appear to be associated with an increased or questionable uncertainty, 
such as data measured using a pycnometer method, are not included in the comparisons. In 
addition to the round-robin measurements, experimental data for the mixtures listed in 
Table 8.2 were selected for the comparisons discussed below. 

The comparisons frequently focus on the representation of data at lower to medium 
temperatures to demonstrate important improvements compared to the previous equations of 
state. In general, towards higher temperatures, e.g. 330 K and 350 K, the deviations decrease.

Synthetic Five-Component Natural Gas Mixture and Pipeline Quality  
Natural Gases 

Experimental measurements of gas phase densities for the five-component synthetic natural 
gas mixture “QUINT” and the round-robin gas NIST2 and their percentage deviations from 
the GERG-2004 formulation are shown in Fig. 8.54.  

The five-component mixture consists of approximately 80% methane, 10% nitrogen, 2% 
carbon dioxide, 5% ethane, and 3% propane. The data were measured by Ruhrgas (1999) 
using an optical interferometry method (Op) and a Burnett apparatus (Bu) and are represented 
by the new equation of state to within their low experimental uncertainty, estimated to be 

 0.07%, over the entire measured temperature and pressure range. The highest 
deviations occur for the lowest measured temperatures and amount to 0.06% at 270 K at about 
15 MPa. Values calculated from the AGA8-DC92 equation of state of Starling and Savidge 
(1992), the current international standard for the calculation of natural gas compression 
factors, deviate from the measurements at 270 K by up to 0.09% at pressures around 11 MPa. 
At higher temperatures, the AGA8-DC92 equation yields similar results compared to the 
GERG-2004 formulation. Deviations of more than 0.1% are obtained from the multi-fluid 
mixture model of Lemmon and Jacobsen (1999) at 270 K. Even at higher temperatures this 
model is not able to represent the measurements as accurately as the new equation of state.  

The round-robin gas NIST2 consists of 10 components and represents a simulated Amarillo 
gas. The mixture is characterised by a very typical natural gas composition with medium 
fractions of methane (about 90.7%), nitrogen (about 3.1%), and ethane (about 4.5%). The 
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content of carbon dioxide amounts to approximately 0.5% as frequently observed in natural 
gases of pipeline quality. The mixture contains about 0.8% of propane and small amounts of 
the further alkanes from n-butane to n-hexane (see also Table 8.1). The selected data cover a 
wide range of temperatures from 250 K to 350 K at pressures up to 29 MPa. All of the 
measurements are represented by the GERG-2004 formulation well within their experimental 
uncertainty, estimated to be  0.07% for Ruhrgas (1993), and  0.1% for 
Magee et al. (1997) and Hwang et al. (1997b). In contrast to the new equation of state, the 
AGA8-DC92 equation deviates from the measurements at 250 K and pressures around 
12 MPa by slightly more than 0.1%. A similar description of the data is achieved at higher 
temperatures. Since the multi-fluid mixture model reported by Lemmon and Jacobsen (1999) 
is not applicable for mixtures containing fractions of n-pentane, isopentane, and n-hexane, no 
comparison is possible here. 

Natural Gases Rich in Methane 

Figure 8.55 displays percentage deviations between experimental densities for two methane-
rich natural gases and values calculated from the GERG-2004 formulation. The round-robin 
gas NIST1 consists of 10 components and represents a simulated Gulf Coast natural gas 
containing about 96.5% methane, 1.8% ethane, and low to small fractions of nitrogen, carbon 
dioxide, and alkanes from propane to n-hexane. The 13-component mixture designated by 
“N61/62” consists of about 98% methane, 0.9% nitrogen, and low to small fractions of carbon 
dioxide, alkanes from ethane to n-octane, and helium. Such natural gases, almost entirely 
composed of methane, are typical for Russian gases. The selected data cover temperatures 
from 250 K to 350 K for wide ranges of pressure. As shown in Fig. 8.55, all of the data are 
represented by the new equation of state with very low deviations of less than 0.05%, being 
clearly within the uncertainty of the measurements. The AGA8-DC92 equation of state yields 
a quite similar accurate description for these types of natural gas mixtures.  

Natural Gases Rich in Nitrogen 

As mentioned in Sec. 2.1.1, a known weakness of the AGA8-DC92 equation of state is its less 
accurate description of natural gases containing a comparatively high fraction of nitrogen [see 
also Klimeck et al. (1996) and Jaeschke and Schley (1996)]. A nitrogen content of more than 
10% is typical for Dutch natural gases of pipeline quality. Figure 8.56 shows density 
measurements of two nitrogen-rich natural gases and their percentage deviations from the 
GERG-2004 formulation. The mixture designated by GU1 consists of seven components and 
represents a simulated Slochteren gas. This natural gas mixture is composed of about 13.5% 
nitrogen, 1% carbon dioxide, 3.3% ethane, and low to small fractions of heavier alkanes. 
Whereas the new equation of state is able to describe all of the selected data over the entire 
covered temperature and pressure ranges within low deviations of (0.05 – 0.07)%, values 

8.4   The Representation of ... Natural Gases, Similar Gases, and Other ... Mixtures 



Fi
g.

 8
.5

5 
Pe

rc
en

ta
ge

 d
en

si
ty

 d
ev

ia
tio

ns
 o

f 
se

le
ct

ed
 e

xp
er

im
en

ta
l p

T 
da

ta
 f

or
 th

e 
m

et
ha

ne
-r

ic
h 

na
tu

ra
l g

as
es

 “
N

IS
T1

” 
an

d 
“N

61
/6

2”
 f

ro
m

 v
al

ue
s 

ca
lc

ul
at

ed
 

fr
om

 th
e 

ne
w

 e
qu

at
io

n 
of

 s
ta

te
 (

G
ER

G
-2

00
4)

, E
qs

. (
7.

1)
 –

 (7
.1

0)
; f

or
 th

e 
m

ix
tu

re
 c

om
po

si
tio

ns
 s

ee
 T

ab
le

s 8
.1

 a
nd

 8
.2

. V
al

ue
s 

ca
lc

ul
at

ed
 f

ro
m

 th
e 

A
G

A
8-

D
C

92
 e

qu
at

io
n 

of
 S

ta
rli

ng
 a

nd
 S

av
id

ge
 (1

99
2)

 a
re

 p
lo

tte
d 

fo
r c

om
pa

ris
on

. B
u:

 B
ur

ne
tt 

ap
pa

ra
tu

s, 
G

D
M

A
: t

w
o-

si
nk

er
 d

en
si

m
et

er
, O

p:
 o

pt
ic

al
 

in
te

rf
er

om
et

ry
 m

et
ho

d.
 

268 8   Comparison of the New Equation of State (GERG-2004) with Experimental Data...



Fi
g.

 8
.5

6 
Pe

rc
en

ta
ge

 d
en

si
ty

 d
ev

ia
tio

ns
 o

f s
el

ec
te

d 
ex

pe
rim

en
ta

l p
T 

da
ta

 fo
r t

he
 n

itr
og

en
-r

ic
h 

na
tu

ra
l g

as
es

 “
G

U
1”

 a
nd

 “
N

60
” 

fr
om

 v
al

ue
s c

al
cu

la
te

d 
fr

om
 th

e 
ne

w
 e

qu
at

io
n 

of
 s

ta
te

 (
G

ER
G

-2
00

4)
, E

qs
. (

7.
1)

 –
 (7

.1
0)

; 
fo

r 
th

e 
m

ix
tu

re
 c

om
po

si
tio

ns
 s

ee
 T

ab
le

s 8
.1

 a
nd

 8
.2

. V
al

ue
s 

ca
lc

ul
at

ed
 f

ro
m

 t
he

 A
G

A
8-

D
C

92
 e

qu
at

io
n 

of
 S

ta
rli

ng
 a

nd
 S

av
id

ge
 (1

99
2)

 a
re

 p
lo

tte
d 

fo
r c

om
pa

ris
on

. G
D

M
A

: t
w

o-
si

nk
er

 d
en

si
m

et
er

, O
p:

 o
pt

ic
al

 in
te

rf
er

om
et

ry
 m

et
ho

d.
 

8.4   The Representation of ... Natural Gases, Similar Gases, and Other ... Mixtures 269



270 8   Comparison of the New Equation of State (GERG-2004) with Experimental Data...

calculated from the AGA8-DC92 equation deviate from the measurements at 250 K by clearly 
more than 0.1%, thus exceeding the estimated uncertainty in density for the data. A quite 
similar poor description is obtained from the AGA8-DC92 equation of state for the p T
relation of the binary mixture methane–nitrogen discussed in Sec. 8.1.1 (see the results for 
nitrogen concentrations of 10% and 20% displayed in Fig. 8.1), underlining the observations 
for this natural gas.  

The AGA8-DC92 equation yields an even worse description of the measurements of Ruhrgas 
(1990) for the 13-component mixture designated by “N60”, exemplifying another nitrogen-
rich natural gas (see Fig. 8.56). The nitrogen concentration for this mixture amounts to about 
11.7%. In contrast to the mixture GU1, N60 additionally contains small fractions of the 
alkanes from n-pentane to n-octane, and helium. Values calculated from the AGA8-DC92 
equation deviate from the data by more than 0.1% at 290 K and even exceed 0.2% at 270 K. 
The new equation of state represents well all measurements to within (0.07 – 0.1)% for all 
measured temperatures and pressures. The examples prove that the GERG-2004 formulation 
is clearly superior to the AGA8-DC92 equation in the description of nitrogen-rich natural 
gases. The new equation allows the calculation of the p T relation with a significantly lower 
uncertainty.

Natural Gases Rich in Carbon Dioxide 

Similar to the very accurate description of the p T relation of the binary mixture methane–
carbon dioxide discussed in Sec. 8.1.1 (see Figs. 8.5 and 8.6), important and substantial 
improvements compared to all previous equations of state are achieved by the GERG-2004 
formulation for natural gas mixtures rich in carbon dioxide. Figure 8.57 shows density 
deviations between data for the round-robin gas GU2 in the temperature range from 250 K to 
325 K at pressures up to 30 MPa and values calculated from the new equation of state. The 
mixture contains medium fractions of nitrogen (5.7%), ethane (4.3%), and propane (0.9%), 
and a comparatively high mole fraction of carbon dioxide of about 7.6%. All of the selected 
data measured by Ruhrgas (1993) and Magee et al. (1997) are well represented by the GERG-
2004 formulation to within low deviations of (0.05 – 0.07)%, which agrees with the 
experimental uncertainty of the data.

At lower temperatures, deviations exceeding 0.1% or even 0.2% are obtained from the 
AGA8-DC92 equation as well as from the preliminary equation of state of Klimeck (2000). 
As previously observed for the binary mixture methane–carbon dioxide (see Fig. 8.5), a worse 
description is obtained from the mixture model of Lemmon and Jacobsen (1999), significantly 
deviating from the measurements over wide ranges of temperature and pressure. Values 
calculated from this model deviate from the experimental data by more than 0.1% at 300 K 
(and 325 K) and by more than 0.2% at lower temperatures. 
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Fig. 8.57 Percentage density deviations of selected experimental p T data for the round-robin natural 
gas “GU2” from values calculated from the new equation of state (GERG-2004), 
Eqs. (7.1) – (7.10); for the mixture composition see Table 8.1. Values calculated from the 
AGA8-DC92 equation of Starling and Savidge (1992) and the mixture models of Lemmon 
and Jacobsen (1999) and Klimeck (2000) are plotted for comparison. GDMA: two-sinker 
densimeter, Op: optical interferometry method. 
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Natural Gases Containing Substantial Amounts of Ethane and Propane, and 
Natural Gases Rich in Ethane 

Natural gases containing substantial amounts of ethane and propane are typical for North Sea 
gas. Percentage density deviations of selected measurements for such natural gas mixtures 
from the GERG-2004 formulation are displayed in Fig. 8.58. The round-robin mixture 
designated by RG2 consists of nine components and contains about 8.5% ethane and 2.3% 
propane (see also Table 8.1). The mixture designated by “N108” is composed of 15 
components and represents an Ekofisk gas enriched with ethane. This mixture only contains 
about 80% methane, but 16% ethane (see also Table 8.2).  

The most reliable measurements for the mixture RG2 are represented by the GERG-2004 
formulation with low deviations of less than (0.05 – 0.07)%, which is well within the 
experimental uncertainty of the data. The measurements of Magee et al. (1997) show a 
systematic offset of about 0.05% from the optical interferometry measurements of Ruhrgas 
(1993) at temperatures of 275 K and 350 K, and from the Burnett measurements of Ruhrgas 
(1993) at 300 K. Similar systematic offsets can also be observed for the data of Magee et al.
(1997) measured for the other round-robin gases. The inconsistencies between the data sets of 
the different sources are, however, increased for this particular mixture. Moreover, 
comparisons made for a number of further data available for natural gas mixtures of nearly the 
same composition are accurately described by the new equation of state, supporting the 
impression that the measurements of Magee et al. (1997) seems to be associated with an 
increased uncertainty. The AGA8-DC92 equation of state almost exactly follows the optical 
interferometry measurements of Ruhrgas (1993) suggesting that the experimental data of this 
mixture were used for the development of the equation.  

Substantial improvements are achieved by the GERG-2004 formulation for natural gas 
mixtures characterised by even higher amounts of ethane than contained in typical Ekofisk 
gases as exemplified by the comparisons shown in Fig. 8.58 for the mixture N108. The new 
equation of state represents all of the data measured by Ruhrgas (1994) with low deviations of 
less than about 0.05%. Values calculated from the AGA8-DC92 equation of state deviate 
from the measurements at 310 K by up to 0.09%, and by up to about 0.2% at 280 K and 
270 K. 

Synthetic Five-Component Natural Gas Mixture Containing Substantial 
Amounts of Ethane, Propane, and n-Butane 

The investigations of Klimeck et al. (1996) not only revealed serious weaknesses for the 
AGA8-DC92 equation of state in the description of natural gases containing high fractions of 
nitrogen (see Fig. 8.56), carbon dioxide (see Fig. 8.57), or ethane (see Fig. 8.58), but also for 
mixtures containing considerable amounts of the further alkanes propane and n-butane. 
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Figure 8.59 displays percentage deviations between density measurements of Ruhrgas (1990) 
for the mixture designated by “D17” and values calculated from the GERG-2004 formulation. 
The five-component mixture consists of about 84.8% methane, 2% carbon dioxide, 8.9% 
ethane, 3.1% propane, and a comparatively high content of n-butane of about 1.2%, which is 
about 10 times higher than commonly observed in natural gases. The data cover temperatures 
from 273 K to 313 K at pressures up to 29 MPa and are all represented by the new equation of 
state to within low deviations of (0.05 – 0.07)%.

Fig. 8.59 Percentage density deviations of selected experimental p T data for the five-component 
synthetic natural gas mixture “D17” from values calculated from the new equation of state 
(GERG-2004), Eqs. (7.1) – (7.10); for the mixture composition see Table 8.2. Values 
calculated from the AGA8-DC92 equation of Starling and Savidge (1992) and the mixture 
models of Lemmon and Jacobsen (1999) and Klimeck (2000) are plotted for comparison. 
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Compared to the previous equations of state, the description of the p T relation of such 
mixtures is considerably improved by the new mixture model. The preliminary equation 
developed by Klimeck (2000) deviates from the measurements at 273 K by up to about 0.1%. 
Deviations between the experimental densities and values calculated from the AGA8-DC92 
equation exceed 0.1% over the entire measured temperature range. Worse results are obtained 
from the mixture model of Lemmon and Jacobsen (1999), deviating by more than 0.2% from 
the measurements.  

Synthetic Natural Gas Mixtures Rich in Nitrogen, Carbon Dioxide, and 
Ethane

The comparisons displayed in Figs. 8.56 – 8.58 have shown important and substantial 
improvements for the p T relation of natural gases containing high fractions of either 
nitrogen, carbon dioxide, or ethane. Figure 8.60 shows comparisons for two mixtures, 
designated by “D18” and “D21”, containing high fractions of all these components, 
demonstrating the enormous predictive power of the new mixture model resulting from the 
accurate and improved description of the respective binary subsystems. Both mixtures are 
characterised by comparatively low mole fractions of methane of about 61.8% (D18) and 
66.1% (D21). The contents of nitrogen, carbon dioxide, and ethane all amount to 
approximately 13% for the four-component mixture D18, whereas the five-component gas 
D21 contains about 13.1% nitrogen, 11.1% carbon dioxide, 9.7% ethane, and a small amount 
of oxygen of 0.014%. The measurements were carried out by Ruhrgas (1990) for D18 and by 
Ruhrgas (1994) for D21 using an optical interferometry method. 

The data for both mixtures are similarly represented by the GERG-2004 formulation with low 
deviations of less than (0.05 – 0.1)%. The AGA8-DC92 equation deviates from the 
measurements for the mixture D18 at 270 K by more than 0.4%, and at 290 K by more than 
0.2%. Values calculated from the AGA8-DC92 equation deviate from the data of the mixture 
D21 by up to about 0.2% at 290 K and more than 0.2% at 280 K. Even at higher temperatures, 
for both mixtures, the AGA8-DC92 equation is not as accurate as the new mixture model. The 
comparisons for the mixture D18 show that the multi-fluid mixture models of Lemmon and 
Jacobsen (1999) and Klimeck (2000) yield more accurate results than the AGA8-DC92 
equation of state, but both models are clearly not able to represent the measurements as 
accurately as the GERG-2004 formulation. The model of Klimeck (2000) deviates from the 
measurements at 270 K by more than 0.1%, and the model of Lemmon and Jacobsen (1999) 
shows deviations of more than 0.2%. Also at higher temperatures, both models are less 
accurate than the new equation of state. 
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Rich Natural Gases 

In general, natural gas produced at the wellhead contains varying (large) amounts of ethane, 
propane, n-butane, isobutane, and heavier hydrocarbons (natural gasoline), being also called 
“natural gas liquids” (NGL). In its raw form, this “rich” natural gas is usually not acceptable 
for transportation in natural gas pipeline systems or for commercial use as a fuel. Moreover, 
natural gas liquids usually have more value on their own than when left in the natural gas. 
Therefore, rich natural gas is processed to meet pipeline quality specifications and to remove 
the natural gas liquids, which are then reprocessed in a fractionation unit to break them out for 
individual sale as ethane, propane, LPG, and other products85. Note that the new mixture 
model can be used for the calculation of such separation processes since it accurately 
describes the phase behaviour of natural gases and hydrocarbon mixtures, as well as their 
liquid phase properties (see Secs. 7.7.3 and 8.4.3 – 8.4.5).

85  For instance, the heavier hydrocarbons n-pentane, n-hexane, etc. form a condensate (light oil), being 
used as an additive in motor fuel production at refineries or as replacement for LPG in making 
plastics at petrochemical plants.  

A number of recent p T data for a total of seven differently composed simulated rich natural 
gas mixtures are available, independently measured by Jaeschke and Schley (1998) and 
Watson and Millington (1998). The mixtures contain up to 18% ethane, 14% propane, 6% 
n-butane, 0.5% n-pentane, 0.2% n-hexane, 2% or 5% nitrogen, and up to 20% carbon dioxide, 
whereas the comparatively low content of methane ranges from only about 52% to 64%. The 
measurements of Jaeschke and Schley (1998) were carried out using an optical interferometry 
method and cover the gas phase and gas-like supercritical region for temperatures from 280 K 
to 350 K at pressures up to 30 MPa. Note that the high content of the hydrocarbons from 
ethane to n-hexane cause the cricondentherm of the rich natural gas to be located at 
considerably higher temperatures (in the approximate range from 300 K to 310 K) than for 
typical natural gases, as shown for the simulated rich natural gas RNG5 in Fig. 7.2. Thus, the 
measurements at the lower temperatures are limited to pressures below the two-phase 
boundary. The densities of Watson and Millington (1998) complement those of Jaeschke and 
Schley (1998) for virtually the same mixture compositions and were measured for 
temperatures ranging from about 313 K to 353 K at pressures from around 8 MPa to 18 MPa 
using a two-sinker densimeter. The uncertainty in density of the data of Watson and 
Millington (1998) is claimed by the authors to be less than 0.04%. For the data measured by 
Jaeschke and Schley (1998), being in general in good agreement with those of Watson and 
Millington (1998), the uncertainty in density is assumed to be 0.1%. A systematic offset of 
(slightly) more than 0.1% can be observed between some data of these two sources, indicating 
an increased uncertainty for at least some of the measurements (see also Fig. 8.61).  

The comparisons in Fig. 8.61 show selected data of these sources for two differently 
composed rich natural gases. The mixture designated by “RNG3” consists of about 59% 
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methane, 5% nitrogen, 6% carbon dioxide, 18% ethane, 8% propane, 3.3% n-butane, 0.5% 
n-pentane, and 0.2% n-hexane, whereas the mixture designated by “RNG5” contains about 
64% methane, 2% nitrogen, 8% carbon dioxide, 12% ethane, 10% propane, 3.3% n-butane, 
0.5% n-pentane, and 0.2% n-hexane. The GERG-2004 formulation represents the selected 
measurements to within deviations of (0.1 – 0.15)%. A similar accurate description is 
obtained for the measurements of Jaeschke and Schley (1998) at lower temperatures (not 
shown here). Comparisons with the data for additionally measured simulated rich natural 
gases show that the new equation of state generally yields similarly accurate results for the 
mixtures containing about 10% to 18% ethane, 8% to 14% propane, 3.3% to 6% n-butane, 
and 6% to 8% carbon dioxide (with or without the smaller fractions of n-pentane and 
n-hexane of 0.5% and 0.2%). Noticeably higher systematic deviations are observed for only 
two rich natural gas mixtures containing about 14% and 20% of carbon dioxide, being 
obviously more difficult to describe. However, the maximum deviations obtained for these 
mixtures never exceed 0.5% (see Table A2.2 of the appendix).  

Although there seems to be potential for further improvements (see also Chap. 9), the current 
description achieved by the GERG-2004 formulation is very satisfactory and represents a 
major improvement compared to the AGA8-DC92 equation of state, which is not able to 
describe any of the data as accurately as the new mixture model. Values calculated from the 
AGA8-DC92 equation deviate from the measurements for the mixture RNG3 by more than 
0.3% at 310 K and by more than 0.2% at even higher temperatures. For the rich natural gas 
mixture RNG5, deviations of up to approximately 0.7% at 310 K and of about (0.2 – 0.4)% at 
higher temperatures are obtained from AGA8-DC92 equation. Maximum deviations of up to 
1% are obtained from the AGA8-DC92 equation for other rich natural gas mixtures.  

Natural Gas–Hydrogen Mixtures and Natural Gases of Uncommon 
Composition

The new mixture model not only accurately describes the p T relation of various types of 
natural gases of pipeline quality and related mixtures, but also accurately handles natural gas–
hydrogen mixtures, natural gases diluted with oxygen, and other special gases as exemplified 
in Figs. 8.62 and 8.63.

Used as an alternative fuel, natural gas–hydrogen mixtures represent the next step on the path 
to an ultimate hydrogen economy. Hydrogen amplifies the clean burning properties of natural 
gas, thus enabling the further reduction of the emission of CO, CO2, NOx, and hydrocarbons 
of gasoline or natural-gas-powered vehicles [see, for example, Akansu et al. (2004)]. 
Figure 8.62 exemplifies the description of such natural gas–hydrogen mixtures by the new 
equation of state. The selected mixture designated by “N72/73/74” consists of 16 components 
and contains only about 73.5% methane, but approximately 9.9% nitrogen, 9.5% hydrogen, 
0.9% carbon monoxide, and 0.09% oxygen. The amounts of carbon dioxide (1.3%), ethane 
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(3.6%), propane (0.8%), and heavier hydrocarbons are similar to those obtained in ordinary 
natural gas mixtures. The uncertainty in density of the selected data measured by Ruhrgas 
(1990) is estimated to be less than (0.07 – 0.1)%. As shown in Fig. 8.62, the measurements 
are well represented by the GERG-2004 formulation with low deviations of less than  

(0.05 – 0.07)%. Note that most of the deviations are less than 0.05%. Slightly higher 
deviations are observed only for the optical interferometry data at the lowest measured 
temperatures between 270 K and 283 K. Whereas the new mixture model is able to represent 
all measurements well within their low experimental uncertainty, values calculated from the 
AGA8-DC92 equation of state deviate from the data at 270 K by more than 0.1%.  

Fig. 8.62 Percentage density deviations of selected experimental p T data for the natural gas–
hydrogen mixture “N72/73/74” from values calculated from the new equation of state 
(GERG-2004), Eqs. (7.1) – (7.10); for the mixture composition see Table 8.2. Values 
calculated from the AGA8-DC92 equation of Starling and Savidge (1992) are plotted for 
comparison. Bu: Burnett apparatus, Op: optical interferometry method. 
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Figure 8.63 shows percentage density deviations of selected measurements for the gas 
mixtures designated by “N115” and “N116” from the GERG-2004 formulation. Mixture 
N115 represents a nitrogen-rich natural gas from Gescher being further diluted with oxygen. 
The mixture consists of 12 components and contains about 81.5% methane, 11.8% nitrogen, 
and normal amounts of carbon dioxide (1.2%), ethane (2.8%), propane (0.6%), and heavier 
alkanes. The comparatively large content of oxygen amounts to about 1.7%. The data were 
measured by Ruhrgas (1994) and are represented by the new equation of state to within very 
low deviations over the entire measured temperature and pressure range. The majority of the 
data is represented clearly to within 0.05%. Slightly higher deviations are obtained at 270 K, 
being, however, within 0.07%. Values calculated from the AGA8-DC92 equation for 
comparison deviate from the measurements by more than 0.1% at 270 K and 290 K. Even at 
330 K, the AGA8-DC92 equation is not able to represent the measurements as accurately as 
the GERG-2004 formulation. Here, deviations of around 0.1% are obtained from the AGA8-
DC92 equation over a wide pressure range.

A similar accurate description is achieved by the GERG-2004 formulation for the rather 
untypical gas mixture N116 as shown in Fig. 8.63. The 12-component mixture represents a 
low calorific natural gas containing large amounts of coke-oven constituents. The mixture 
consists of only about 28.9% methane, 2% carbon dioxide, 0.8% ethane, and small fractions 
of heavier hydrocarbons, but 28% nitrogen, 27% hydrogen, and 13% carbon monoxide. All 
data, measured by Ruhrgas (1994), are represented by the new equation of state with very low 
deviations of less than 0.05%, except for a few data points being, however, well within 

0.07%. Large systematic deviations are obtained from the AGA8-DC92 equation of state, 
which is not able to accurately describe this rather special mixture. Values calculated from 
this equation deviate from the measurements at 270 K by up to approximately 0.7%, and at 
330 K by up to about 0.35%. 

As exemplified by all of these comparisons, the new equation of state achieves a very 
accurate description of the p T relation for binary mixtures and natural gases over a much 
wider range of mixture conditions (temperature, pressure, and composition) than any of the 
previously developed equations. Since no multi-component mixture data were used for the 
development of the new mixture model, the improvements achieved for natural gases, similar 
(related) gases, and other multi-component mixtures (see also the comparisons presented in 
the following subsections) mainly result from the accurate description of the different binary 
subsystems. Furthermore, the accurate representation of multi-component data confirms the 
suitability of the structure of the GERG-2004 formulation in the description of multi-
component mixtures. 
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8.4.2 Caloric Properties in the Homogeneous Gas Region 

This subsection discusses the representation of caloric properties by the GERG-2004 
formulation. Compared to the data situation present for gas phase p T measurements, 
measurements for caloric properties of natural gases are scarce. According to the demands on 
the accuracy of the new mixture model in the description of caloric properties of pipeline 
quality natural gases (see Chap. 3), the uncertainty in gas phase speed of sound was defined to 
be w w  0.1%. Modern technical applications require the prediction of isobaric enthalpy 
differences to within h h  1%. The investigations of Klimeck et al. (1996) showed 
that the AGA8-DC92 equation of state is not able to fulfil these requirements. A significant 
shortcoming of this equation concerns the description of caloric properties at lower 
temperatures. The comparisons below demonstrate the results and improvements achieved by 
the new equation of state.

Speed of Sound 

Younglove et al. (1993) reported accurate caloric data for gas phase speeds of sound of 
different natural gas mixtures containing eight to 10 components. The data were measured 
over the temperature range 250 K T  350 K for pressures up to p  11 MPa, thus 
covering the most interesting range in custody transfer. The mixtures are representative of 
commercially available or naturally occurring compositions in North America and in Europe 
(see Table 8.3). Comparisons between data for binary mixtures measured by these authors and 
those of other sources (as shown in Figs. 8.8, 8.9, and 8.14) conclude that the uncertainty in 
speed of sound of the multi-component data of Younglove et al. (1993) is likely to be  
(0.05 – 0.1)%.

Table 8.3 Molar compositions of the natural gas mixtures investigated by Younglove et al. (1993) 

Mixture Composition (mole-%) 
 CH4 N2 CO2 C2H6 C3H8 n-C4 i-C4 n-C5 i-C5 n-C6

Gulf Coast 96.561 0.262 0.597 1.829 0.410 0.098 0.098 0.032 0.046 0.067
Amarillo 90.708 3.113 0.500 4.491 0.815 0.141 0.106 0.065 0.027 0.034
Statoil Dry 83.980 0.718 0.756 13.475 0.943 0.067 0.040 0.008 0.013 –
Statfjord 74.348 0.537 1.028 12.005 8.251 3.026 – 0.575 – 0.230

Percentage speed of sound deviations from the GERG-2004 formulation and the AGA8-DC92 
equation of state for three natural gases measured by Younglove et al. (1993) are shown in 
Fig. 8.64. The different mixtures represent a methane-rich natural gas (Gulf Coast), a natural 
gas containing medium fractions of methane, nitrogen, and ethane (Amarillo), and an ethane-
rich natural gas (Statoil Dry). Table 8.3 lists the respective molar compositions (prepared 
gravimetrically) of these mixtures. The measurements of all three mixtures are represented by 
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the GERG-2004 formulation well within low deviations of (0.05 – 0.1)% over the entire 
measured temperature and pressure range, being well within the estimated uncertainty of the 
data. The AGA8-DC92 equation shows similar deviations at temperatures of 275 K and 
350 K. At 250 K, the AGA8-DC92 equation shows weaknesses in the description of the 
speeds of sound for the ethane-rich natural gas mixture containing about 13.5% ethane. Here, 
deviations of up to 0.5% are observed. The AGA8-DC92 equation also yields less accurate 
results for the Amarillo gas mixture showing systematic deviations of more than 0.1% up to 
about 0.2% at the highest measured pressures. The comparisons show that the results 
achieved by the new equation of state are well within the targeted uncertainty for gas phase 
speeds of sound.

Fig. 8.65 Percentage deviations of the experimental speed of sound data for the natural gas 
“Statfjord” from values calculated from the new equation of state (GERG-2004), 
Eqs. (7.1) – (7.10); for the mixture composition see Table 8.3. Values calculated from the 
AGA8-DC92 equation of Starling and Savidge (1992) are plotted for comparison. 
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Improvements are also achieved for natural gas mixtures containing comparatively large 
amounts of hydrocarbons from ethane to n-hexane. Figure 8.65 shows percentage deviations 
of speeds of sound measured by Younglove et al. (1993) for an eight-component simulated 
Statfjord mixture from the GERG-2004 formulation. The mixture consists of about 74.3% 
methane, 12% ethane, 8.3% propane, 3% n-butane, and notable amounts of n-pentane (about 
0.6%) and n-hexane (about 0.2%). In contrast to the rich natural gas mixtures discussed in 
Sec. 8.4.1, the Statfjord mixture contains only comparatively low fractions of nitrogen and 
carbon dioxide (see Table 8.3). The new equation of state represents most of the data to 
within low deviations of (0.05 – 0.1)%. At the lowest measured temperature of 300 K, near 
the cricondentherm of the mixture and corresponding to a reduced temperature of T Tr 1 28. ,
the GERG-2004 formulation shows systematically increasing deviations right up to 0.5% at 
pressures above 8 MPa. However, values calculated from the AGA8-DC92 equation of state 
deviate from the measurements at 300 K by up to about 0.8%. At higher temperatures, the 
AGA8-DC92 equation shows a similar description as compared to the GERG-2004 
formulation.  

Taking into account the rather untypical composition of the investigated mixture, the 
representation achieved by the GERG-2004 formulation is quite satisfactory. The poor data 
situation concerning speeds of sound for binary mixtures consisting of methane and propane 
at lower temperatures, and of methane and heavier hydrocarbons in general (see also 
Sec. 6.1), limits the achievable accuracy of the new mixture model. Potential further 
improvements would thus, first of all, require the measurement of accurate and wide-ranging 
speed of sound data for binary mixtures of (at least) methane with the hydrocarbons propane 
and n-butane at reduced temperatures T Tr 1 2. .

Enthalpy Differences 

Very accurate gas phase isobaric enthalpy differences, suitable for a discussion of the 
description of the caloric property enthalpy, were measured by Owren et al. (1996) for a 
synthetic natural gas mixture. Similar to the data for methane–ethane of these authors 
previously discussed in Sec. 8.1.2 (see Fig. 8.10), the uncertainty in enthalpy differences of 
the measurements is estimated to be less than (0.2 – 0.5)%. The synthetic mixture consists of 
about 80% methane, 10% nitrogen, 2% carbon dioxide, 5% ethane, and 3% propane (see also 
Fig. 8.54 for the description of the p T relation for this mixture). Figure 8.66 shows 
percentage deviations of selected experimental isobaric enthalpy differences from the GERG-
2004 formulation and the AGA8-DC92 equation of state. Almost all measurements are 
represented to within low deviations of (0.2 – 0.5)% by the new mixture model, thus being 
in good agreement with the uncertainty of the data. There are only two points located in the 
lower temperature range 243 K T  257 K for which the deviations obtained from the 
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GERG-2004 formulation slightly exceed 0.5%, but stay clearly within the targeted uncertainty 
of h h  1% for the new equation of state.

Significant weaknesses in the description of the selected isobaric enthalpy differences can be 
observed for the AGA8-DC92 equation of state that deviates from the data at the lower 
temperatures from 243 K to 257 K by (slightly) more than 1.5%. Compared to the GERG-
2004 formulation, the AGA8-DC92 equation is even less accurate in the temperature range 
265 K T  285 K. Similar accurate results are only obtained at higher temperatures. The 
comparisons demonstrate that the new equation of state yields substantial improvements in 
the description of isobaric enthalpy differences in the temperature and pressure range of most 
interest for pipeline applications. Deviations of up to about 4% in the medium temperature 
range, and more than 5% at lower temperatures are obtained from the cubic equation of state 
of Peng and Robinson (1976) (not shown here). 

Isobaric Heat Capacity 

Measurements for isobaric heat capacities of natural gases and other multi-component 
mixtures are scarce. However, comparisons with the few available multi-component data 
show that the GERG-2004 formulation achieves very similar accuracy in the description of 
isobaric heat capacities as obtained for binary mixtures (see Secs. 8.1.2 and 8.2.2).  

Figure 8.67 shows percentage deviations of isobaric heat capacities measured by Trappehl 
(1987) for three different ternary mixtures and a quaternary mixture consisting of methane, 
nitrogen, ethane, and propane from the new equation of state. The data cover the gas phase 
and gas-like supercritical region at temperatures from 200 K to 300 K along isobars of 2 MPa, 
4 MPa, 8 MPa, and 12 MPa (data for the lowest measured temperatures are partly located near 
the phase boundary of the respective mixture). According to the author, the uncertainty in 
isobaric heat capacity of the measurements is less than 2.5%, which seems to be a quite 
realistic estimation. Most of the measurements are represented by the GERG-2004 
formulation to within deviations of (1 – 2)%, thus being represented well within the 
experimental uncertainty claimed by the author. Slightly higher systematic deviations of up to 

3% occur for a few measurements. The achieved description is supported by the mixture 
model of Lemmon and Jacobsen (1999), which yields similarly accurate results (not shown 
here).

Sections 8.4.1 and 8.4.2 discuss the representation of data for thermal and caloric properties in 
the gas phase and gas-like supercritical region of natural gases, similar gases, and other multi-
component mixtures by the new equation of state. Since the most important pipeline 
applications are located in this area of the fluid region, the highest demands on the accuracy 
have to be satisfied. In contrast to the AGA8-DC92 equation of state, the GERG-2004  
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Fig. 8.67 Percentage deviations of the experimental isobaric heat capacity data measured by 
Trappehl (1987) for three different ternary mixtures and a quaternary mixture composed of 
methane, nitrogen, ethane, and propane from values calculated from the new equation of 
state (GERG-2004), Eqs. (7.1) – (7.10). 

formulation describes the entire fluid region. Nevertheless, the new equation of state is able to 
represent the available most accurate experimental data for gas phase and gas-like 
supercritical densities, speeds of sound, and enthalpy differences mostly to within their low 
experimental uncertainty. This is not true for the AGA8-DC92 equation of state, which is the 
current internationally accepted standard for the gas region. Over wide ranges of temperature 
and pressure, and for natural gas compositions difficult to describe, the new equation of state 
achieves significant improvements. For most cases, the deviations obtained from the 
developed mixture model are smaller than those from the one of Lemmon and Jacobsen 
(1999).

8.4.3 The p T Relation and Caloric Properties in the Homogeneous
Liquid Region 

As mentioned in Chap. 6, the data situation for thermal and caloric properties of natural gases 
and other multi-component mixtures in the liquid phase is rather poor. For multi-component 
mixtures containing varying amounts of LNG components, a number of very accurate 
measurements were reported for saturated liquid densities as discussed in Sec. 8.4.4. Accurate 
density data, suitable for discussion, were measured in the homogeneous liquid region for 
ternary mixtures of main and secondary natural gas components. 

8.4   The Representation of ... Natural Gases, Similar Gases, and Other ... Mixtures 
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The AGA8-DC92 equation of state is only valid in the gas region. There is no current 
internationally accepted standard for the description of the liquid region and the vapour-liquid 
equilibrium. Therefore, values calculated from the cubic equation of state of Peng and 
Robinson (1976) and from the multi-fluid mixture model of Lemmon and Jacobsen (1999) are 
used for comparison. 

Liquid Phase Densities of Ternary Mixtures of Methane, Nitrogen, Ethane, 
and Propane 

Figure 8.68 displays percentage deviations of liquid phase density data for ternary mixtures 
composed of methane, nitrogen, ethane, and propane from the GERG-2004 formulation, the 
multi-fluid mixture model of Lemmon and Jacobsen (1999), and the cubic equation of state of 
Peng and Robinson (1976). The measurements cover the temperature range from about 91 K 
to 115 K at pressures just above the phase boundary of the respective mixture. All data are 
represented by the new mixture model with low systematic deviations of clearly less than 

0.2%. Most of the measurements are actually within 0.1%. For the data of Pan et al. (1975) 
and Rodosevich and Miller (1973), a very similar accurate description is observed for the 
model of Lemmon and Jacobsen (1999) for the ternary mixtures containing nitrogen. A 
different description is observed for the methane–ethane–propane system. Here, a systematic 
offset of around 0.1% is obtained for the measurements of Pan et al. (1975) and Rodosevich 
and Miller (1973) on the mixture containing approximately 85% methane, 10% ethane, and 
5% propane. A deviation of about 0.3% is observed for the data point of Shana’a and Canfield 
(1968) measured for the mixture consisting of approximately 72% methane, 17% ethane, and 
11% propane. The cubic equation of state of Peng and Robinson (1976) shows deviations of 
more than 10% for all data sets. 

Liquid Phase Densities of Ternary Hydrocarbon Mixtures 

Accurate liquid phase densities measured over a wide range of temperatures and pressures up 
to 7 MPa were recently reported by Kayukawa et al. (2005a) for three ternary mixtures 
consisting of the light hydrocarbons propane, n-butane, and isobutane, complementing the 
binary measurements on propane–n-butane, propane–isobutane, and n-butane–isobutane 
reported in the same publication (see also Figs. 8.24 and 8.25). Selected measurements and 
their percentage deviations from the GERG-2004 formulation as well as the multi-fluid 
mixture models of Lemmon and Jacobsen (1999) and Miyamoto and Watanabe (2003) are 
shown in Fig. 8.69. In addition, deviations between saturated liquid densities measured by the 
authors for the same mixture compositions are shown in the deviation plots (the saturated data 
are treated here as ordinary p T data). Similar to the measurements on the respective binary  
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Fig. 8.68 Percentage density deviations of selected experimental p T data for different ternary 
mixtures composed of methane, nitrogen, ethane, and propane from values calculated from 
the new equation of state (GERG-2004), Eqs. (7.1) – (7.10), the mixture model of Lemmon 
and Jacobsen (1999), and the cubic equation of state of Peng and Robinson (1976). 

mixtures discussed in Sec. 8.2.1, the GERG-2004 formulation accurately represents the 
selected ternary data to within low deviations of (0.1 – 0.2)%. The model of Miyamoto and 
Watanabe (2003) shows a less accurate description with deviations exceeding 0.3% at 240 K 
for the measurements on the mixture consisting of 20% propane, 60% n-butane, and 20% 
isobutane. The model of Lemmon and Jacobsen (1999) supports the description achieved by 
the GERG-2004 formulation at 240 K, but yields slightly different results at 340 K. However, 
all deviations are within 0.3% for this model, which is satisfactory.  

8.4   The Representation of ... Natural Gases, Similar Gases, and Other ... Mixtures 
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Fig. 8.69 Percentage density deviations of selected experimental p T data measured by Kayukawa et
al. (2005a) for the propane–n-butane–isobutane ternary mixture from values calculated 
from the new equation of state (GERG-2004), Eqs. (7.1) – (7.10), the mixture model of 
Miyamoto and Watanabe (2003), and the mixture model of Lemmon and Jacobsen (1999). 
Sat: saturated liquid densities. 

A number of liquid phase densities were measured by Pecar and Dolecek (2003) for the 
n-pentane–n-hexane–n-heptane ternary system for a variety of distinct mixture compositions. 
The measurements complement those reported by the same authors for the binary mixtures 
n-pentane–n-hexane, n-pentane–n-heptane, and n-hexane–n-heptane (see also Fig. 8.27). 
Similar to the binary measurements, the ternary data cover temperatures from 298 K to  
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Fig. 8.70 Percentage density deviations of selected experimental p T data measured by Pecar and 
Dolecek (2003) for the n-pentane–n-hexane–n-heptane ternary mixture from values 
calculated from the new equation of state (GERG-2004), Eqs. (7.1) – (7.10). 

348 K at pressures up to 40 MPa. All of the data reported by these authors are well 
represented by the GERG-2004 formulation to within deviations of (0.1 – 0.5)% as 
exemplified by the selected measurements displayed in Fig. 8.70. The uncertainty in density 
of the ternary measurements is estimated by the authors to be less than 1%.
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Fig. 8.71 Percentage deviations of selected experimental isobaric heat capacity data measured by van 
Kasteren and Zeldenrust (1979) for an eight-component LNG-like mixture at a pressure of 
5.07 MPa from values calculated from the new equation of state (GERG-2004),  
Eqs. (7.1) – (7.10), and the cubic equation of state of Peng and Robinson (1976); the 
mixture composition is as follows: 89.94% CH4, 0.78% N2, 4.52% C2H6, 3.35% C3H8,
0.63% n-C4H10, 0.74% i-C4H10, 0.03% n-C5H12, and 0.01% i-C5H12.

Fig. 8.72 Percentage deviations of selected experimental (isobaric) enthalpy differences measured by 
van Kasteren and Zeldenrust (1979) for an eight-component LNG-like mixture at a 
pressure of 5.07 MPa from values calculated from the new equation of state (GERG-2004), 
Eqs. (7.1) – (7.10), and the cubic equation of state of Peng and Robinson (1976); the 
mixture composition is as follows: 89.94% CH4, 0.78% N2, 4.52% C2H6, 3.35% C3H8,
0.63% n-C4H10, 0.74% i-C4H10, 0.03% n-C5H12, and 0.01% i-C5H12.
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Isobaric Heat Capacity and Enthalpy Differences 

Figure 8.71 displays percentage deviations between selected liquid phase isobaric heat 
capacities for an eight-component LNG-like mixture measured by van Kasteren and 
Zeldenrust (1979) and values calculated from the GERG-2004 formulation and the cubic 
equation of state of Peng and Robinson (1976). The mixture consists of about 89.9% methane, 
0.8% nitrogen, 4.5% ethane, 3.4% propane, 0.6% n-butane, 0.7% isobutane, 0.03% n-pentane, 
and 0.01% isopentane. The selected data cover temperatures from 115 K to 189 K at a 
pressure of 5.07 MPa and are represented well by the new equation of state to within 
deviations of 1%. Significantly larger systematic deviations exceeding values of even 5% 
when approaching the phase boundary of the mixture are observed for the cubic equation of 
state of Peng and Robinson (1976).

Aside from gas and liquid phase isobaric heat capacities, the accurate description of the 
enthalpy-temperature relation of natural gases, including the total enthalpy change from room 
temperature down to 110 K, is of considerable importance for the economic design of 
liquefaction and regasification plants. For the same mixture discussed above, van Kasteren 
and Zeldenrust (1979) also reported liquid phase isobaric enthalpy data. The percentage 
deviations between selected experimental enthalpy differences h h T p x h T p x2 2 1 1( , , ) ( , , )
(with T2  270 K and T1 according to Fig. 8.72) and values calculated from the GERG-2004 
formulation and the cubic equation of state of Peng and Robinson (1976) are shown in 
Fig. 8.72. The new equation of state represents all of the data to within deviations of around 

0.5%. The cubic equation shows systematic deviations ranging from around 1.5% at 
temperatures below 150 K to more than 3% when approaching the phase boundary of the 
mixture. 

8.4.4 Saturated Liquid Densities of LNG-Like Mixtures 

Experimental data for liquid phase densities of multi-component natural gas mixtures are 
scarce. Very accurate data, however, exist for saturated liquid densities of a variety of LNG-
like mixtures consisting of up to eight components, including simulated commercial LNG 
mixtures, over the temperature range from 100 K to 140 K, corresponding to reduced 
temperatures ranging from about 0.4 to 0.6. The measurements were performed as part of an 
extensive experimental program carried out at the National Bureau of Standards (NBS) in 
Boulder, Colorado, USA [Haynes et al. (1983)]. The uncertainty of the data is claimed by the 
authors to be  0.1%. Since the pressure dependence of the p T relation in the liquid 
phase is small for reduced temperatures such as these, the accurately measured saturated 
liquid densities also provide a suitable basis for the approximate evaluation of the quality of 
the new equation of state in the description of homogeneous liquid phase densities of LNG-
like mixtures. Table 8.4 summarises the data sets being discussed in the following passages 
(see Figs. 8.73 and 8.74) and lists the compositions of the corresponding mixtures.  
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Table 8.4 Molar compositions of selected multi-component LNG-like mixtures 

Author Composition (mole-%) 
  CH4 N2 C2H6 C3H8 n-C4 i-C4 n-C5 i-C5

Five- to six-component mixtures (see Fig. 8.74) 
 Haynes (1982) 90.613 0.601 6.026 2.154 0.306 0.300 – –
 Haynes (1982) 88.225 0.973 7.259 2.561 0.492 0.490 – –
 Haynes (1982) 85.934 1.383 8.477 2.980 0.707 0.519 – –
 Haynes (1982) 85.892 – 11.532 1.341 0.705 0.530 – –
 Hiza & Haynes (1980) 85.442 – 5.042 4.038 2.901 2.577 – –
 Haynes (1982) 84.558 – 8.153 4.778 1.252 1.259 – –
 Hiza & Haynes (1980) 81.300 4.250 4.750 4.870 2.420 2.410 – –

Seven- to eight-component mixtures (see Fig. 8.73) 
 Haynes (1982) 90.068 0.599 6.537 2.200 0.284 0.291 0.011 0.010
 Haynes (1982) 85.341 – 7.898 4.729 0.992 0.854 0.089 0.097
 Haynes (1982) 75.713 0.859 13.585 6.742 1.326 1.336 0.216 0.223
 Haynes (1982) 75.442 – 15.401 6.950 1.057 0.978 0.083 0.089
 Haynes (1982) 74.275 0.801 16.505 6.547 0.893 0.843 0.067 0.069

Mixtures Consisting of Seven to Eight LNG Components 

Figure 8.73 exemplifies the high quality of the new equation of state in the description of 
saturated liquid densities for multi-component LNG-like mixtures. Displayed are percentage 
deviations between the selected measurements of Haynes (1982) for five different mixtures 
and values calculated from the GERG-2004 formulation as well as the cubic equation of state 
of Peng and Robinson (1976). The seven- to eight-component mixtures are composed of 
methane, nitrogen, ethane, propane, n-butane, isobutane, n-pentane, and isopentane, and are 
representative for compositions encountered in commercial LNG86. The new equation of state 
describes all measurements well within deviations of (0.1 – 0.4)%. Most of the 
measurements are actually represented to within (0.1 – 0.3)%. Slightly higher systematic 
deviations up to about 0.4% are only obtained for the data of the mixture containing 
comparatively large amounts of n-butane and isobutane (about 1.3% each), and n-pentane and 
isopentane (about 0.2% each). The cubic equation of state of Peng and Robinson (1976) is not 
able to represent the data within acceptable deviations and deviates from the measurements 
for the five selected mixtures by approximately 10% or more. On average, the new mixture 
model is about 50 times more accurate than an ordinary cubic equation of state, which is still  

86  Note that the mixtures do not contain any carbon dioxide. To prevent it from freezing to dry ice and 
plugging the heat exchangers, this component is generally removed from the natural gas before 
liquefaction.
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Fig. 8.73 Percentage deviations 100 100/ ( ) /exp calc exp  of the experimental saturated 
liquid densities measured by Haynes (1982) for different LNG-like mixtures consisting of 
seven to eight components from values calculated from the new equation of state (GERG-
2004), Eqs. (7.1) – (7.10), and the cubic equation of state of Peng and Robinson (1976); for 
the mixture compositions see Table 8.4. 

widely applied in the natural gas industry. The GERG-2004 formulation thus enables a 
substantial improvement in the description of natural gases in the liquid phase. The 
comparisons with the data measured by Hiza et al. (1977) for binary mixtures of LNG 
components showed similar results (see Fig. 8.16 and also Fig. 8.17).

Mixtures Consisting of Five to Six LNG Components 

Comparisons with the cubic equation of state of Peng and Robinson (1976) are thus of minor 
value for further discussions. Figure 8.74 shows deviations of selected experimental saturated 
liquid densities of Hiza and Haynes (1980) and Haynes (1982) for LNG-like mixtures 
consisting of five to six components from the GERG-2004 formulation as well as the multi-
fluid mixture model of Lemmon and Jacobsen (1999). The new mixture model represents 
almost all of the measurements to within deviations of (0.1 – 0.3)% (maximum deviations 
are clearly below 0.4%). Larger systematic deviations, partially exceeding 0.4%, are observed 
for the multi-fluid mixture model of Lemmon and Jacobsen (1999) for the nitrogen containing 
mixtures as well as for those only consisting of hydrocarbons. For the latter, systematic  
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Fig. 8.74 Percentage deviations 100 100/ ( ) /exp calc exp  of selected experimental 
saturated liquid densities for different LNG-like mixtures consisting of five to six 
components from values calculated from the new equation of state (GERG-2004), 
Eqs. (7.1) – (7.10), the mixture model of Lemmon and Jacobsen (1999), and the cubic 
equation of state of Peng and Robinson (1976); for the mixture compositions see Table 8.4. 

deviations of more than 0.5% are observed. The cubic equation of Peng and Robinson (1976) 
again deviates from the measurements for the seven selected mixtures by approximately 10% 
or more. 

The new multi-fluid mixture model satisfies the demands concerning the representation of the 
saturated liquid densities, underlined by the comparisons given here. The data situation for 
experimental liquid phase densities of natural gases is not sufficient to show this accurate 
representation by multi-component data in the homogeneous (compressed) liquid region. Due 
to the small pressure dependence in liquid phase densities and the very accurate description of 
compressed liquid densities for binary mixtures shown in Secs. 8.1.1 and 8.2.1, a comparable 
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uncertainty can be assumed. As shown by the comparisons, densities of natural gases in the 
liquid region are represented by the new equation of state more accurately by an order of 
magnitude than cubic equations of state widely in use in technical applications. 

8.4.5 The pTxy Relation 

Measurements on the pTxy relation of natural gases or other multi-component mixtures are 
rather scarce. Moreover, virtually no accurate experimental information is available for 
bubble point pressures of natural gases. Compared to the very accurate saturated liquid 
densities of Hiza and Haynes (1980) and Haynes (1982) discussed in the previous subsection, 
their reported pressure measurements are much less accurate and can only be considered as 
approximate vapour pressures (see also Chap. 6). The data show quite large systematic 
deviations from different equations of state as demonstrated by the investigations of Klimeck 
(2000).

A number of comparatively accurate dew point data were recently measured by several 
authors and are accurately represented by the GERG-2004 formulation as shown in the 
comparisons given in Sec. 7.7.3, for selected natural gas mixtures. Various, but in general not 
wide ranging, measurements are available for the pTxy relation of ternary mixtures of natural 
gas and air components. The representation of a selection of these data is discussed in the 
following passages. The accurate description of the pTxy relation is of indispensable 
importance for the design of any separation processes as encountered in the processing and 
liquefaction of natural gas or air.

Methane–Carbon Dioxide–Ethane 

Figure 8.75 shows percentage deviations of experimental vapour pressures for the ternary 
system methane–carbon dioxide–ethane from values calculated from the GERG-2004 
formulation, the multi-fluid mixture model of Lemmon and Jacobsen (1999), and the cubic 
equation of state of Peng and Robinson (1976). The data were measured by Wei et al. (1995) 
at a temperature of 230 K and at pressures from about 1.2 MPa to 6.6 MPa. The  
data complement those measured by the same authors for the pTxy relation of the  
constituent binaries methane–carbon dioxide, methane–ethane, and carbon dioxide–ethane 
(see Figs. 8.20 – 8.22 and Figs. 7.16 and 7.17). The new equation of state represents all of the 
vapour pressures with deviations of clearly less than 4%. Most of the measurements are 
actually within (1 – 3)%, which is in good agreement with the representation obtained for 
the respective binary mixtures. Larger maximum deviations exceeding 5% are obtained from 
both the mixture model of Lemmon and Jacobsen (1999) and the cubic equation of Peng and 
Robinson (1976).
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300 8   Comparison of the New Equation of State (GERG-2004) with Experimental Data...

Fig. 8.75 Percentage deviations of the experimental vapour pressures measured by Wei et al. (1995) 
for the methane–carbon dioxide–ethane ternary mixture at a temperature of 230 K from 
values calculated from the new equation of state (GERG-2004), Eqs. (7.1) – (7.10), the 
mixture model of Lemmon and Jacobsen (1999), and the cubic equation of state of Peng 
and Robinson (1976). 

The comparisons in Fig. 8.76 display deviations between the experimentally determined 
vapour phase fractions of each mixture component, corresponding to the simultaneously 
measured set of pTxy data of Wei et al. (1995) and values calculated from the GERG-2004 
formulation. The vapour fractions for methane and carbon dioxide are represented by the new 
equation of state well within deviations of (1 – 2) mole-% with only a few exceptions with 
slightly higher deviations. However, the measured ethane fractions are all within  

(0.5 – 1) mole-%, indicating a less sensitive pressure dependence for this component. This 
achieved accurate description is very satisfactory and agrees well with the results obtained for 
the respective binary mixtures. Similar to the vapour pressure measurements shown in 
Fig. 8.75, larger but acceptable systematic deviations are obtained from the mixture model of 
Lemmon and Jacobsen (1999) and the cubic equation of Peng and Robinson (1976) (not 
shown here).
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Fig. 8.76 Deviations of the experimental methane, carbon dioxide, and ethane mole fractions in the 
saturated vapour phase measured by Wei et al. (1995) for the methane–carbon dioxide–
ethane ternary mixture at a temperature of 230 K from values calculated from the new 
equation of state (GERG-2004), Eqs. (7.1) – (7.10): 100 yCH4

=
100 ( ), ,y yCH exp CH calc4 4

, 100 yCO2
= 100 ( ), ,y yCO exp CO calc2 2

, 100 yC H2 6
=

100 ( ), ,y yC H exp C H calc2 6 2 6
.

Ethane–Propane–n-Butane 

Figure 8.77 displays deviations of the pTxy measurements by Lhoták and Wichterle (1983) for 
the ternary hydrocarbon system ethane–propane–n-butane from values calculated from the 
GERG-2004 formulation. The data cover pressures from 0.7 MPa to 4.9 MPa in the rather 
narrow temperature range from about 304.6 K to 306.5 K enclosing the critical temperature of  
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Fig. 8.77 Representation of the experimental vapour pressures and ethane mole fractions in the 
saturated vapour phase measured by Lhoták and Wichterle (1983) for the ethane–propane–
n-butane ternary mixture by the new equation of state (GERG-2004), Eqs. (7.1) – (7.10): 
100 p ps s/ = 100 ( ) /, , ,p p ps exp s calc s exp , 100 yC H2 6

= 100 ( ), ,y yC H exp C H calc2 6 2 6
.

Values calculated from the mixture model of Lemmon and Jacobsen (1999) and the cubic 
equation of state of Peng and Robinson (1976) are plotted for comparison at a temperature 
of 305 K. 

pure ethane. Most of the measured vapour pressures are represented by the new equation of 
state to within deviations of (1 – 3)%. The smallest deviations are observed in the vicinity of 
pure ethane, while the scatter in the deviations increases towards lower ethane concentrations. 
The simultaneously measured vapour phase compositions are accurately described as well. As 
shown for the ethane fractions, most of the data are within (0.5 – 1) mole-%. The mixture 
model of Lemmon and Jacobsen (1999) as well as the cubic equation of Peng and Robinson 
(1976) yield quite similar results in the representation of the experimental vapour phase 
compositions. For vapour pressures, a slightly different but still acceptable description is 
observed.

Multi-Component Mixtures of Hydrocarbons from Ethane to n-Hexane 

A number of accurate VLE measurements on mixtures of hydrocarbons from ethane through 
n-hexane, related to the design of depropanisers (depropanisation is a continuous distillation 
process), were reported by VonNiederhausern and Giles (2001). The measurements were 
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performed on the binary mixtures propane–n-butane and propane–isobutane (see also 
Figs. 8.32 – 8.34), and three multi-component mixtures (a ternary mixture of propane, 
n-butane, and isobutane, a four-component mixture of ethane, propane, n-butane, and 
isobutane, and a five-component mixture of propane, n-butane, isobutane, n-pentane, and 
n-hexane). Although the authors only measured one data point at a defined temperature and 
pressure (and overall mixture composition) for each multi-component system, the data 
provide accurate and valuable information for testing the quality of the new equation of state 
in flash operations for multi-component hydrocarbon mixtures. Table 8.5 lists the results of 
the pTxy measurements of VonNiederhausern and Giles (2001) on the four- and five-
component mixtures and the values calculated from the GERG-2004 formulation using the 
flash program of the software package developed in this work (see Secs. 7.6 and 7.14). The 
deviations between the experimentally determined and the calculated liquid and vapour molar 
compositions are small (in general much less than 1 mole-%). 

Table 8.5 Comparisons between the VLE measurements of VonNiederhausern and Giles (2001) 
on two multi-component hydrocarbon mixtures and values calculated from the GERG-
2004 formulation 

Component  Experimental overall and phase   Calculated phase compositions and  
  compositions (mole fractions)  total differences (mole fractions)a

i xi xi,exp xi,exp xi,calc xi,calc xi xi

Four-component mixture at 322.04 K and 1.713 MPa 
Ethane  0.02  0.0197 0.0467  0.0193 0.0458  0.0004 0.0009 
Propane  0.96  0.9567 0.9423  0.9604 0.9448  0.0037 0.0025
n-Butane  0.01  0.0112 0.00461  0.0102 0.00424  0.0010 0.00037
Isobutane  0.01  0.0124 0.00639  0.0101 0.00511  0.0023 0.00128

Five-component mixture at 366.48 K and 1.039 MPa 
Propane  0.01  0.0089 0.0229  0.0089 0.0240  0.0000 0.0011
n-Butane  0.50  0.5008 0.6032  0.4927 0.5921  0.0081 0.0111 
Isobutane  0.15  0.1436 0.2169  0.1444 0.2206  0.0008 0.0037
n-Pentane  0.20  0.2061 0.1159  0.2063 0.1200  0.0002 0.0041
n-Hexane  0.14  0.1406 0.0411  0.1477 0.0433  0.0071 0.0022
a The total mole fraction differences are calculated as x x xi i i, ,exp calc  and x x xi i i, ,exp calc .

Nitrogen–Oxygen–Argon 

A huge amount of (comparatively) accurate pTxy measurements exists for the ternary system 
nitrogen–oxygen–argon. The accurate description of the VLE behaviour of this system is of 
great importance for the design of air separation plants. Figures 8.78 and 8.79 display 
comparisons between various measurements of several authors covering a wide range of  

8.4   The Representation of ... Natural Gases, Similar Gases, and Other ... Mixtures 
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Fig. 8.78 Percentage deviations of selected experimental vapour pressures for the nitrogen–oxygen–
argon ternary mixture from values calculated from the new equation of state (GERG-2004), 
Eqs. (7.1) – (7.10), and the mixture model of Lemmon et al. (2000). 

mixture conditions in the temperature range from 78 K to 136 K and values calculated from 
the GERG-2004 formulation as well as the multi-fluid mixture model of Lemmon et al.
(2000). For vapour pressures, a comparatively large scatter in the deviations is observed for 
the lower temperatures from 78 K to 84 K. In this range, the GERG-2004 formulation 
represents the measurements to within deviations of (1 – 5)%. At higher temperatures, most  
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Fig. 8.79 Deviations of selected experimental nitrogen mole fractions in the saturated vapour phase 
for the nitrogen–oxygen–argon ternary mixture from values calculated from the new 
equation of state (GERG-2004), Eqs. (7.1) – (7.10), and the mixture model of Lemmon et
al. (2000). 

of the vapour pressures are represented to within (1 – 2)%. The simultaneously measured 
vapour phase compositions are, however, accurately described over the complete temperature 
range. Most of the data are represented by the new mixture model with deviations of clearly 
less than (0.5 – 1) mole-%.  

8.4   The Representation of ... Natural Gases, Similar Gases, and Other ... Mixtures 
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The description achieved by the new equation of state is supported by the results obtained 
from the multi-fluid mixture model of Lemmon et al. (2000). As mentioned before, this 
model uses a generalised departure function in addition to the adjusted reducing functions for 
density and temperature. However, the model achieves a quite similar accurate description 
compared to the GERG-2004 formulation. Noticeable but minor differences are only observed 
for the measured vapour pressures in the critical region of the ternary system. In the 
temperature range from 125 K to 136 K, the model of Lemmon et al. (2000) yields a slightly 
different and perhaps more accurate representation for the vapour pressures of Wilson et al.
(1965) as shown in Fig. 8.78. However, since these data do not seem to be the most accurate 
values available for this system, as shown from the comparisons for subcritical temperatures, 
the achieved description of the new equation of state is very satisfactory. Moreover, virtually 
no differences are obtained in the description of the vapour phase compositions as 
demonstrated for the deviations in the experimentally determined nitrogen fractions. Note that 
the cubic equation of state of Peng and Robinson (1976) is clearly less accurate in the 
description of the pTxy relation of nitrogen–oxygen–argon than the two multi-fluid mixture 
models (not shown here; see also the statistical comparisons in Table A2.4 of the appendix). 

8.5 General Conclusions of the Comparisons for Binary and  
Multi-Component Mixtures 

As underlined by the comparisons and discussions above, the new equation of state clearly 
satisfies the requirements on the accuracy and range of validity defined prior to its 
development (see Chap. 3). The new mixture model achieves a very accurate description of 
the thermal and caloric properties of natural gases, similar gases, and other multi-component 
mixtures, as well as of their constituent binaries over a much wider range of temperatures, 
pressures, and compositions than any of the previously developed equations of state.

The statements on the range of validity as well as the conservative uncertainty estimations for 
the different thermodynamic properties given in Sec. 7.13, are based on detailed graphical 
comparisons with all available experimental data (see Chap. 6). The following passages 
briefly summarise the main conclusions that follow from the above selected comparisons.  

Binary Mixtures 

Substantial improvements are achieved by the new mixture model, for example, in the 
description of gas phase densities and speeds of sound (including gas-like supercritical states), 
of binary mixtures consisting of methane and further important natural gas components. Very 
accurate experimental gas phase densities and speeds of sound are represented by the GERG-
2004 formulation to within their low experimental uncertainty of less than (0.05 – 0.1)% in 
density and speed of sound. The new equation of state achieves a very accurate description of 
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these properties over a much wider range of temperatures, pressures, and compositions than 
any of the previously developed equations, including the AGA8-DC92 equation of state of 
Starling and Savidge (1992) and the multi-fluid mixture model of Lemmon and Jacobsen 
(1999). Accurate experimental gas phase enthalpy differences are represented by the new 
equation of state to within deviations of (0.2 – 0.5)%, which is in agreement with the 
experimental uncertainty of the measurements.  

The GERG-2004 formulation accurately represents the properties in the liquid phase and 
liquid-like supercritical region. Typical deviations between experimental compressed liquid 
densities and values calculated from the new mixture model are within (0.1 – 0.2)% (e.g. 
methane–nitrogen, methane–ethane, ethane–propane, and binary mixtures of propane, 
n-butane, and isobutane), or (0.1 – 0.3)% (e.g. n-pentane–n-hexane, n-hexane–n-heptane), or 

(0.1 – 0.5)% (e.g. n-pentane–n-heptane). In general, the deviations obtained from the 
mixture model developed in this work are smaller than those from the model of Lemmon and 
Jacobsen (1999). Isobaric and isochoric heat capacities are well represented by the new model 
to within (1 – 2)% in the homogeneous gas, liquid, and supercritical regions. 

The vapour-liquid phase equilibrium is accurately described as well. It is interesting to note 
that the deviations observed for saturated liquid densities are very consistent to those obtained 
for compressed liquid densities. The achieved description for the pTxy relation is in agreement 
with the experimental uncertainty of the measurements (being often of comparatively poor 
quality). Accurate vapour pressure data for binary mixtures consisting of the main natural gas 
components or light hydrocarbons are represented to within (1 – 2)%. However, frequently a 
scatter in the measurements of (1 – 3)% or more can be observed. Typical deviations 
between the simultaneously measured vapour phase compositions and values calculated from 
the GERG-2004 formulation are within (0.5 – 1) mole-% or (1 – 2) mole-% depending on 
the accuracy of the corresponding measurements.  

The new equation of state not only accurately represents the properties of binary mixtures of 
the main natural gas components or binary hydrocarbon mixtures, but also many binary 
mixtures containing the secondary natural gas components hydrogen, oxygen, carbon 
monoxide, water, helium, and argon.

Multi-Component Mixtures 

The GERG-2004 formulation fulfils the high demands on the accuracy in the description of 
thermal and caloric properties of natural gases and related mixtures in the custody transfer 
region. Important improvements compared to the AGA8-DC92 equation of state are 
particularly achieved for temperatures below 290 K as well as for mixtures of unusual 
composition. Thus, the known weaknesses of the current internationally accepted standard for 
this region are eliminated by the new development.  

8.5   General Conclusions of the Comparisons... 
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In contrast to the AGA8-DC92 equation of state, the GERG-2004 formulation is valid (and 
yields very accurate results) in the extended fluid region (homogeneous gas, liquid, and 
supercritical regions, and vapour-liquid equilibrium states). Additionally, the new equation of 
state is able to represent the available most accurate experimental data for gas phase and gas-
like supercritical densities, speeds of sound, and enthalpy differences mostly to within their 
low experimental uncertainty, which is not true for the AGA8-DC92 equation of state. 
Accurate experimental gas phase densities for a broad variety of natural gases and related 
mixtures are represented by the GERG-2004 formulation to within (0.05 – 0.1)% for 
temperatures down to 250 K and at pressures up to 30 MPa. The same is observed for gas 
phase speeds of sound covering temperatures from 250 K to 350 K at pressures up to 11 MPa. 
Accurate experimental enthalpy differences covering almost the same temperature range at 
pressures up to 17 MPa are mostly represented by the new equation of state to within  

(0.2 – 0.5)%. Accurate experimental gas phase densities of rich natural gases are in general 
described with deviations of less than (0.1 – 0.3)% over a wide temperature range and at 
pressures up to 30 MPa. In addition to that, and as obtained for binary mixtures, isobaric heat 
capacities of natural gases and other multi-component mixtures are well represented to within 

(1 – 2)%, which is in agreement with the experimental uncertainty of the available data.  

All in all, compared to the AGA8-DC92 equation of state, the GERG-2004 formulation 
achieves important and fundamental improvements in the description of gas phase and gas-
like supercritical densities of natural gas mixtures containing 

high fractions of nitrogen, 

high fractions of carbon dioxide, 

high fractions of ethane, 

substantial amounts of ethane, propane, and heavier hydrocarbons, 

high fractions of hydrogen, 

considerable amounts of carbon monoxide, and  

noticeable fractions of oxygen. 

The new equation of state is much more accurate for rich natural gases and in the description 
of all caloric properties. 

The new multi-fluid mixture model also satisfies the demands concerning the description of 
liquid phase properties and vapour-liquid equilibrium states. Major improvements are 
achieved for saturated liquid densities of LNG-like multi-component mixtures compared to 
ordinary cubic equations of state. The GERG-2004 formulation well represents accurate 
experimental saturated liquid densities to within (0.1 – 0.5)%, being on average about 50 
times more accurate than results obtained from ordinary cubic equations of state. A 
comparable and very accurate description can be expected for compressed liquid densities of 
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natural gas mixtures due to the small pressure dependence of the p T relation in the 
temperature range from 100 K to 140 K. This assumption is supported by the very accurate 
description achieved for compressed liquid densities of important binary mixtures such as 
methane–nitrogen and methane–ethane. Moreover, experimental liquid phase densities of 
ternary mixtures consisting of natural gas main constituents or only hydrocarbons are 
accurately described as well. For many cases, the deviations obtained from the new mixture 
model are smaller than those from the model of Lemmon and Jacobsen (1999).  

For liquid phase isobaric and isochoric heat capacities, a similar accurate description as that 
for binary mixtures can also be expected for multi-component mixtures. Experimental liquid 
phase isobaric enthalpy differences are represented to within (0.5 – 1)%. 

For vapour pressures and vapour phase compositions of multi-component mixtures, a similar 
accurate description as that for binary mixtures is achieved by the GERG-2004 formulation. 
Accurate vapour pressures are represented to within (1 – 3)% and vapour phase 
compositions to within (1 – 2) mole-%. The achieved description is supported by the results 
obtained from the still widely applied cubic equation of state of Peng and Robinson (1976). 
Cubic equations generally achieve a quiet accurate description of (only) the pTxy relation of 
mixtures. In general, the new equation of state yields similar or even more accurate results as 
shown in the comparisons.  

General Comments 

Due to the basic structure of the new multi-fluid mixture model, the representation of multi-
component mixture data is based on the description of thermal and caloric properties of binary 
mixtures. Thus, the model only considers the binary interactions of the molecules in the multi-
component mixture. This restriction, mostly resulting from the limited data situation, 
obviously does not affect the accuracy in the description of multi-component mixtures, 
implying that ternary and higher order interactions between molecules in the mixture are 
negligible for the components considered in the developed model (this is confirmed by 
comparisons with ternary and quaternary data). For an accurate description of the properties 
of multi-component mixtures, the development of accurate equations for the constituent 
binaries is necessary and sufficient.  

In general, the quality and the extent of the available experimental data limit the achievable 
accuracy of any empirical equation of state. Many of the improvements achieved in this work 
are due to the use of recently measured accurate experimental data. However, the structure of 
the mixture model is also of considerable importance for the accurate description of binary 
and multi-component mixtures. Thus, aside from the use of suitable flexible and thus very 
efficient reducing functions for density and temperature, the development of binary specific 
departure functions is indispensable to represent the most accurate binary data to within their 

8.5   General Conclusions of the Comparisons... 
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low experimental uncertainty. Generalised departure functions allow an improved description 
of binary mixtures characterised by limited data. The combined strategy pursued in this work 
proved to be clearly superior to the one of Lemmon and Jacobsen (1999) using a single 
generalised departure function for all considered binary mixtures. However, their work 
provided a foundation from which this work was able to build on, and a basis on which the 
new model could be compared to in order to supersede it with increased accuracies and a 
more fundamental functional form. 
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9 Outlook and Future Challenges 

The new equation of state for thermal and caloric properties of natural gases, similar gases, 
and other mixtures developed in this work fulfils all of the requirements defined prior to its 
development as shown by the comparisons presented in the previous chapter (see also 
Chap. 3). However, based on experiences gained during this work, it is worthwhile to discuss 
the further extension of the current mixture model as well as the corresponding property 
calculation software. Some of the main ideas and recommendations, including those 
mentioned at several places in the previous chapters, will be summarised in the following 
passages.

Extension to Further Components 

One of the main recommendations concerns the extension of the developed multi-fluid 
mixture model to further components. As mentioned before, the structure of the new equation 
of state basically allows for an extension to any arbitrary number of components without 
affecting the representation of mixtures consisting of the 18 natural gas components already 
considered.

Table 9.1 List of available accurate technical equations of state for selected further componentsa

Pure substance Reference Range of validity Number 
  Temperature Pressure of terms 

T/K pmax/MPa  

Further important components 
n-Nonane Lemmon & Span (2006) 219 – 575 800 12 
n-Decane Lemmon & Span (2006) 243 – 675 800 12 
Hydrogen sulphide Lemmon & Span (2006) 187 – 760 170 12 

Further optional components 
Ethylene Span & Wagner (2003b) 104 – 473 100 12 
Cyclohexane Span & Wagner (2003b) 279 – 473 100 12 
Toluene Lemmon & Span (2006) 178 – 700 500 12 
n-Dodecane Lemmon & Huber (2004) 263 – 700 500 12 
Sulphur dioxide Lemmon & Span (2006) 197 – 523 35 12 
a See the literature for further technical and also reference quality equations of state. 

Aside from the extension of the new equation of state to the heavier hydrocarbons n-nonane 
and n-decane, the implementation of hydrogen sulphide is of particular interest. Hydrogen 
sulphide is important in the processing of raw natural gases and the injection of acid gases 
(mainly consisting of carbon dioxide and hydrogen sulphide) into deep saline aquifers and 
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depleted hydrocarbon reservoirs driven by the need to dispose of hydrogen sulphide produced 
with natural gas from sour gas reservoirs (see also Chap. 3). These processes occur over a 
wide range of mixture compositions and operating conditions, frequently requiring the 
separation of one or more components from the mixture. Furthermore, natural gases may also 
contain small amounts of ethylene, propylene, benzene, and toluene. To inhibit the undesired 
formation of gas hydrates (hydrocarbon ice) that can lead to blockage of transport pipelines, 
alcohols such as methanol and monoethylene glycol are commonly used as an anti-freeze 
added to the wellstream. Fortunately, accurate technical equations of state in the form of 
fundamental equations well fitting to the currently pursued structure of the multi-fluid mixture 
model are available for a number of these components and are listed in Table 9.1.  

Aside from the pure substance equations of state, binary data are required to (at least) fit the 
parameters of the reducing functions for density and temperature. However, the representation 
of mixtures with limited or poor data can be taken into account by only using different 
combining rules for the critical parameters of the components without any fitting (see 
Sec. 5.2). For binary mixtures consisting of the current 18 components and n-nonane, 
n-decane, and hydrogen sulphide, a comprehensive data set of more than 15,000 data points 
has been compiled within the framework of this work. Preliminary investigations have shown 
that there are a number of data available for binary mixtures containing one of the 18 
considered components with ethylene, propylene, benzene, or toluene.

Extension of the Mixture Model to User-Definable (Pseudo-)Components 

In addition to the number of considered distinct and well defined mixture components, the 
implementation of one or more pseudo-components that can be individually defined by the 
user seems to be worthwhile. Such a development is relevant for many applications in the 
chemical and petrochemical industry. Uncommon mixture constituents and heavy 
hydrocarbons, which have a great influence on the phase behaviour of natural gases even 
when only present in very small amounts, can be handled in this way. 

For this development, a generalised equation of state in the form of fundamental equations 
with substance specific (adjustable) parameters is required which can be used like a usual 
substance specific equation of state. Such an equation was developed by Span (2000b) and 
can be expressed as follows: 

a T
RT

T T n n ei
d t

i
i

d t

i

i i i i
pi( , ) ( , ) ( , ) ( , )o r o

1

5

6

10
 (9.1) 

with

n c c w c wi i i i1 2 3
4

, , , , r ,   and T Tr . (9.2) 



9   Outlook and Future Challenges 313 

In Eq. (9.2), r , Tr , and w are substance dependent adjustable parameters. The structure of the 
equation for r  in Eq. (9.1) was determined by the simultaneous optimisation method (see 
Sec. 4.5) considering data sets for 13 non- and weakly polar substances. The generalised 
coefficients cj i,  in Eq. (9.1) were determined by a fit to data sets for methane, ethane, 
propane, n-butane, isobutane, n-pentane, n-hexane, n-heptane, n-octane, oxygen, and argon. 
The values for the exponents di , ti , and pi , and the coefficients cj i,  are tabulated in Span 
(2000b). With these parameters, Eq. (9.1) becomes an empirical three parameter equation of 
state for nonpolar fluids.

To specify a pseudo-component, values for r  (an approximate critical density), Tr  (an 
approximate critical temperature), and w (an approximate acentric factor) are required. 
Normally, these parameters can be fitted to experimental data to compensate for the limited 
accuracy of this kind of corresponding states approach. Due to the numerically very stable 
simultaneously optimised functional form of the three parameter approach, a very small 
number of accurate experimental results is sufficient to adjust the substance specific 
parameters and to obtain equations of state yielding satisfyingly accurate results for a variety 
of substances. When data are not available, the critical density c , the critical temperature Tc,
and the acentric factor  can be used for r , Tr , and w. Whether the limited accuracy of this 
corresponding states approach, without fitting the parameters to experimental data, is 
sufficient to obtain at least reasonably accurate results for the properties of the desired 
substance and those for mixtures containing small amounts of such a component remains still 
to be investigated.

Development of Further Binary Departure Functions 

The present mixture model uses equations of state in the form of fundamental equations for 
each considered mixture component along with binary correlation equations to take the 
residual mixture behaviour into account. Most of the binary mixtures are represented only by 
using adjusted reducing functions for density and temperature. Binary specific and 
generalised departure functions were additionally developed for binary mixtures consisting of 
important main and secondary natural gas components (see Sec. 7.10). This approach enabled 
a very accurate description of the properties of various types of natural gases, similar gases, 
and other mixtures in over wide range of mixture conditions (temperature, pressure, and 
composition) as underlined by the comparisons presented in the preceding chapter. Potential 
further improvements were identified during the development of the new equation of state, 
also resulting from very recent data or other data that were not available at the time the 
mixture model was developed.  

A very accurate description of the thermal and caloric properties of binary mixtures is 
achieved by the use of binary specific departure functions. Such a development, however, 
requires a sufficiently comprehensive and comparatively accurate data set. Since this 
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precondition is not fulfilled for most of the considered binary systems, aside from the 
measurement of mixture properties where data are currently not available, potential 
improvements can be achieved by the development of further generalised departure functions. 
Based on experiences gained during this work, it seems to be worthwhile to develop different 
generalised departure functions for the following groups of (somehow) related binary 
mixtures: 

Binary mixtures of the air components nitrogen, oxygen, and argon (i.e. nitrogen–oxygen, 
nitrogen–argon, and oxygen–argon).

Binary mixtures of carbon dioxide with the hydrocarbons ethane, propane, n-butane, etc.

Binary hydrocarbon mixtures consisting of or containing the heavier hydrocarbons from 
n-pentane to n-octane.

Binary mixtures containing helium (e.g. nitrogen–helium, carbon dioxide–helium, and 
helium–argon).  

Although the developed mixture model already yields a fairly accurate description of the 
thermal and caloric properties of (dry) air by using only adjusted reducing functions for 
density and temperature87, investigations have shown that a very accurate description of 
densities and speeds of sound similar to that achieved for natural gases can be obtained by 
developing a short generalised departure function for the binary mixtures of the main air 
constituents nitrogen, oxygen, and argon. Such a development would offer the opportunity to 
calculate the thermal and caloric properties of natural gases and air very accurately in the 
homogeneous gas, liquid, and supercritical regions, as well as for vapour-liquid equilibrium 
states using a single and consistent mixture model. The most accurate and wide-ranging 
equations of state for air and mixture of nitrogen, oxygen, and argon were developed by 
Lemmon et al. (2000)88. The accuracy of these equations is superior to the one achieved by 
the mixture model developed in this work in particular for gas and liquid phase densities and 
speeds of sound, being represented to within 0.1% for densities and within 0.2% for speeds 
of sound in the homogeneous gas, liquid, and supercritical regions. Compared to these 
equations, a quite similar accurate description is obtained from the new mixture model for 

87  The uncertainty of the mixture model in gas phase and gas-like supercritical densities for air is less 
than (0.1 – 0.2)% for temperatures up to 900 K and pressures to 90 MPa, and less than (0.2 – 0.5)% 
in liquid phase and liquid-like supercritical densities for temperatures down to 60 K. For the speed 
of sound, similar uncertainties are estimated. The uncertainty in isobaric and isochoric heat capacity 
is estimated to be less than (1 – 2)% in the homogeneous gas, liquid, and supercritical regions.  

88  The authors actually published two equations. An equation of state in the form of a fundamental 
equation treating ternary air as a pseudo pure component with a fixed composition (which does not 
allow for the calculation of saturation properties needed in separation processes), and a multi-fluid 
mixture model using adjusted reducing functions for density and temperature along with a 
generalised two-term departure function for the constituent binaries.  
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isobaric and isochoric heat capacities, and for the pTxy relation as demonstrated in Secs. 8.3.2 
and 8.4.5. 

As mentioned in Sec. 8.4.1, potential further improvements might be achievable for the 
description of the p T relation of rich natural gases containing large amounts of carbon 
dioxide of 14% or more. The developed mixture model achieves a very accurate description 
for the p T relation of natural gases rich in carbon dioxide as well as of synthetic natural gas 
mixtures containing high fractions of nitrogen, carbon dioxide, and ethane. Therefore, the 
higher deviations mentioned in Sec. 8.4.1 are most likely due to the comparatively large 
amounts of propane, n-butane, n-pentane, and n-hexane found in rich natural gases. The 
development of a generalised departure function for binary mixtures of carbon dioxide with 
these hydrocarbons seems to be worthwhile testing. 

In general, data for binary hydrocarbon mixtures consisting of or containing heavier 
hydrocarbons is lacking. However, for certain binary hydrocarbon mixtures, a number of 
recently published and comparatively accurate measurements are available, covering a fairly 
wide range of mixture conditions. Binary hydrocarbon mixtures for which only limited 
experimental information is available could benefit from the development of a generalised 
departure function for hydrocarbon mixtures containing the heavier hydrocarbons from 
n-pentane to n-octane, or the extension of the existing generalised departure function for 
secondary alkanes to these mixtures.  

Extension of the Property Calculation Software 

In addition to the new mixture model, the corresponding property calculation algorithms, 
including the tangent-plane stability analysis and the pT flash and phase envelope algorithms, 
of the new software package can easily be extended to further components. The development 
of Gibbs free energy based (or rather Helmholtz free energy based) minimisation procedures 
according to the approaches reported by Michelsen (1999) is recommended for future 
extensions of the calculation software as described in Sec. 7.9. This would allow for solving 
other flash situations of technical relevance aside from the implemented and well-known 
isothermal flash calculation, such as the isenthalpic flash and the isentropic flash (see 
Sec. 7.9.3 and also Sec. 5.4.4). 

Liquid-Liquid and Multi-Phase Equilibrium Calculations 

Multi-fluid mixture models are capable of accurately describing the two-phase vapour-liquid 
equilibrium of binary and multi-component mixtures as shown in the various comparisons 
with experimental data in Chaps. 7 and 8. Individual investigations carried out in the course 
of this work have shown that such models are also able to predict binary and multi-component 
liquid-liquid equilibrium (see also Sec. 7.7.3) as well as binary and multi-component multi-
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phase equilibrium (tested for the vapour-liquid-liquid equilibrium). Detailed and 
comprehensive comparisons with experimental data and other models concerning the 
accuracy of this prediction remain for future work.  

The development of robust and efficient multi-phase algorithms seems to be a general 
challenge to be taken.
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10 Summary 

In cooperation with the DVGW (German Technical and Scientific Association on Gas and 
Water) and European natural gas companies (E.ON Ruhrgas, Germany; Enagás, Spain; 
Gasunie, The Netherlands; Gaz de France, France; Snam Rete Gas, Italy; and Statoil, 
Norway), which are members of GERG (Groupe Européen de Recherches Gazières), a new 
equation of state for natural gases and other mixtures was developed in this work. The new 
formulation is a fundamental equation explicit in the Helmholtz free energy as a function of 
density, temperature, and composition. 

There is currently an internationally accepted standard only for the p T relation in the 
homogeneous gas region of natural gases, namely the AGA8-DC92 equation of state of 
Starling and Savidge (1992). Aside from the restriction to the homogeneous gas phase, the 
AGA8-DC92 equation of state shows significant weaknesses in the description of natural gas 
properties and covers only a limited temperature, pressure, and composition range [Jaeschke 
and Schley (1996), Klimeck et al. (1996), Klimeck (2000)]. Cubic equations of state, which 
show poor accuracy in the description of many thermodynamic properties, are commonly 
used in the natural gas industry for phase equilibrium calculations, with further correlation 
equations applied in the liquid phase, typically applicable only in the subcritical range for 
very limited mixture conditions. As a result of the use of individual equations for different 
fluid regions, there are inconsistencies in calculations when moving from one region to 
another and when more than one phase is involved.

The new formulation, adopted by GERG in 2004 and called GERG-2004 equation of state or 
GERG-2004 for short, overcomes the weaknesses and limitations of the previous equations 
and is valid for wide ranges of temperature, pressure, and composition and covers the gas 
phase, the liquid phase, the supercritical region, and vapour-liquid equilibrium states for 
natural gases and other mixtures consisting of the 18 components methane, nitrogen, carbon 
dioxide, ethane, propane, n-butane, isobutane, n-pentane, isopentane, n-hexane, n-heptane, 
n-octane, hydrogen, oxygen, carbon monoxide, water, helium, and argon. 

The basis for the development of this fully consistent mixture model and its evaluation is the 
continuously updated database composed of more than 100,000 experimental data for 
multiple thermodynamic properties in different fluid regions. About 75% of the collected data 
accounts for binary mixtures and the remaining 25% accounts for multi-component mixtures, 
including various types of natural gases, hydrocarbon mixtures, and other mixtures. Almost 
70% of the available mixture data describe the p T relation, more than 20% of the data are 
vapour-liquid equilibrium state points, and less than 10% account for caloric properties. 

As a multi-fluid correlation, the new mixture model uses accurate equations of state in the 
form of fundamental equations for each mixture component along with several functions 
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developed for the binary mixtures of the components that take into account the residual 
mixture behaviour. This allows for an accurate description of the properties of multi-
component mixtures over a wide range of compositions. The different functional forms of the 
binary equations have been determined by using a state-of-the-art linear structure-
optimisation method and nonlinear multi-property fitting techniques in an iterative procedure. 
Most of the binary systems for the 153 combinations resulting from the 18 components 
studied in this work are taken into account by using adjusted reducing functions for density 
and temperature. For a number of well-measured binary mixtures of important natural gas 
components, binary specific or generalised departure functions were additionally developed. 
Binary mixtures characterised by poor data, allowing for neither the development of a 
departure function nor the fitting of the parameters of the reducing functions, are taken into 
account by using different combining rules for the pure component critical parameters. This 
combined strategy pursued in this work proved to be clearly superior to the early model for 
mixtures of natural gas components developed by Lemmon and Jacobsen (1999) using a 
single generalised departure function for all considered binary mixtures. 

Special interest has been focused on achieving physically correct behaviour along the vapour-
liquid phase boundary. A new functional form was introduced in this work resulting in a 
fundamentally improved formulation as compared to the natural gas model developed by 
Klimeck (2000) that showed physically unreasonable shapes in the description of vapour-
liquid equilibrium states. Equations developed here using the new terms do not show any 
bumps and are in the description of all thermodynamic properties superior to the equations 
developed by Klimeck (2000). 

The GERG-2004 formulation is able to represent the most accurate experimental binary and 
multi-component data for gas phase and gas-like supercritical densities, speeds of sound, and 
enthalpy differences mostly to within their low experimental uncertainties, which is not true 
for the AGA8-DC92 equation of state. The new wide-range formulation achieves an accuracy 
never obtained before by an equation of state for mixtures. The normal range of validity 
covers temperatures from 90 K to 450 K and pressures up to 35 MPa. The uncertainties in gas 
phase density and speed of sound for a broad variety of natural gases and related mixtures are 
less than 0.1% over the temperature range from 250 K to 450 K at pressures up to 35 MPa. 
Accurate data for isobaric enthalpy differences of binary and multi-component mixtures are 
reproduced to within their experimental uncertainty, which is less than (0.2 – 0.5)%. In the 
liquid phase of many binary and multi-component mixtures, the uncertainty of the equation in 
density amounts to generally less than (0.1 – 0.5)%, which is again in agreement with the 
experimental uncertainty of the data. The vapour-liquid equilibrium of binary and multi-
component mixtures, including the dew points of natural gases, is accurately described as 
well. For instance, accurate vapour pressure data for binary and ternary mixtures of the main 
natural gas constituents or of hydrocarbons are reproduced to within their experimental 
uncertainty, which is generally less than (1 – 3)%.
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Compared to the AGA8-DC92 equation of state, GERG-2004 achieves important and 
fundamental improvements in the description of gas phase and gas-like supercritical densities 
of natural gas mixtures containing, for example, high fractions of nitrogen, carbon dioxide, or 
ethane, or substantial amounts of ethane, propane, and heavier hydrocarbons. The new 
equation of state allows for the accurate description of natural gas–hydrogen mixtures, low-
calorific natural gases, and other mixtures of uncommon composition. Moreover, GERG-
2004 is much more accurate for rich natural gases and in the description of all caloric 
properties, and also satisfies the demands concerning the description of liquid phase 
properties and vapour-liquid equilibrium states.  

The wide range of validity enables the use of GERG-2004 in both standard and advanced 
technical applications for natural gases and related mixtures. This includes, e.g. pipeline 
transport, natural gas storage, improved and integrated processes with liquefied natural gas, 
the design of separation processes as encountered in the processing of rich natural gas to meet 
pipeline quality specifications, the production of natural gas liquids and liquefied petroleum 
gas, the production and refining of light oil, processes using mixtures of hydrocarbons as 
alternative refrigerants, and future applications with natural gas–hydrogen mixtures.  

Along with the new mixture model, robust and efficient property calculation routines, 
resulting in a comprehensive and user-friendly software package, were developed. They allow 
for the calculation of several single- and two-phase properties at arbitrary mixture conditions 
(temperature, pressure, and composition) where the prior knowledge of the number of phases 
is not required, including pT flash, phase envelope, dew point, and bubble point calculations 
without any user-provided initial estimates. The algorithms are based on modern numerical 
procedures using various partial derivatives to solve the set of equations for the equilibrium 
and secondary conditions for the unknown variables, to perform second order Gibbs free 
energy minimisation, and to verify the (phase) stability of the solution by means of 
minimising the tangent plane distance. Due to the increased complexity of the mixture model, 
a systematic and modular approach, where all required derivatives were analytically 
determined including the very sophisticated composition derivatives, was used to avoid 
inefficient and incorrect computer codes. Moreover, the solution to other flash situations of 
technical relevance, such as the isenthalpic flash and the isentropic flash, was described. 

The structure of the new mixture model was kept as simple as possible to allow for the 
development of computing-time saving algorithms and an easy extension to further 
components. 

With the development of the new wide-range equation of state, the final assembly of a 
property database with applications for natural gases and other mixtures over the entire fluid 
region has been accomplished. The GERG-2004 formulation should be established as a 
standard international reference equation for all natural gas applications where 
thermodynamic properties are required. 
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A1 Estimated Uncertainties in Calculated Density and Speed 
of Sound for Methane, Nitrogen, Carbon Dioxide, and 
Ethane

Fig. A1.1 Tolerance diagram for densities calculated from the new equation of state for methane, see 
Sec. 4.8. For region C, the uncertainty in pressure is given. 

Fig. A1.2 Tolerance diagram for speed of sound data calculated from the new equation of state for 
methane, see Sec. 4.8. 
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Fig. A1.3 Tolerance diagram for densities calculated from the new equation of state for nitrogen, see 
Sec. 4.8. For region C, the uncertainty in pressure is given. 

Fig. A1.4 Tolerance diagram for speed of sound data calculated from the new equation of state for 
nitrogen, see Sec. 4.8. 
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Fig. A1.5 Tolerance diagram for densities calculated from the new equation of state for carbon 
dioxide, see Sec. 4.8. For region C, the uncertainty in pressure is given. 

Fig. A1.6 Tolerance diagram for speed of sound data calculated from the new equation of state for 
carbon dioxide, see Sec. 4.8. 
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Fig. A1.7 Tolerance diagram for densities calculated from the new equation of state for ethane, see 
Sec. 4.8. For region C, the uncertainty in pressure is given. 

Fig. A1.8 Tolerance diagram for speed of sound data calculated from the new equation of state for 
ethane, see Sec. 4.8. 
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A2 Data Sets for Binary and Multi-Component Mixtures and 
Statistical Analysis 

The data presented in Chap. 6 were used to assess the accuracy of the mixture model 
developed in this work. The accuracies of calculated values of various properties are 
determined by comparing them to measured values. Graphical deviation plots illustrate these 
comparisons and demonstrate random errors and relative consistency among different 
experimental data as shown in Chap. 8 for a number of selected examples for binary and 
multi-component mixtures. Statistical analyses of all of the collected data sets (used for either 
fitting the parameters and optimising the structure of the different binary equations or only for 
comparison) are used to determine the overall estimated accuracy of the mixture model and to 
define the ranges of estimated accuracies for various properties calculated with the new 
formulation (see Sec. 7.13). To compare the results, statistical analyses using the AGA8-
DC92 equation of state of Starling and Savidge (1992) and the cubic equation of state of Peng 
and Robinson (1976) are provided additionally where possible1.

The definitions of the statistics used to evaluate an equation are based on the percent 
deviation for any property z:

z
z z

zm
m

L
N
MM

O
Q
PP

exp calc

exp
. (A2.1) 

According to this definition, the statistics are defined as: 

AAD 1

1M
zm

m

M
, (A2.2) 

Bias 1

1M
zm

m

M
, (A2.3) 

SDV Bias1
1

2

1M
zm

m

M
a f , (A2.4) 

RMS 1 2

1M
zm

m

M
a f . (A2.5) 

Equation (A2.2) defines the average absolute deviation (AAD) of a data set from property 
values calculated from an equation. High values of AAD indicate either a systematic or large 
random difference between the data and the equation. The average deviation of the data set is 

1  The AGA8-DC92 equation of state is only valid for properties in the homogeneous gas phase and 
gas-like supercritical region. The cubic equation of state of Peng and Robinson (1976) is used for 
comparison for liquid and saturated liquid densities as well as for VLE data.  
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quantified by the bias value in Eq. (A2.3). Large positive or negative values of the bias 
indicate systematic differences between the data and the equation. The SDV from Eq. (A2.4) 
is the standard deviation for a data set and gives an indication of the systematic or random 
dispersion of the data set about the bias value. The root-mean-squared (RMS) deviation in 
Eq. (A2.5) provides another indication of the systematic or random dispersion of the data 
from the equation. When all four statistical parameters are near zero, data sets are accurately 
represented by an equation. Therefore, the values of these parameters should be small. For the 
following tabular listings and comparisons, the SDV is not included. 

The label “MaxD” indicates the maximum value of zm  in a data set. The data points above a 
certain percentage can be considered as outliers (“bad” points) and are not included in the 
statistics, as even one very large deviation which is based upon an error in the data or a 
weakness in the computer program can greatly change the values of the statistics. These 
outliers are often typographical errors in the database or points for which the algorithm failed 
to find a solution (e.g. some data points claimed to be homogeneous are, however, located 
within the two-phase region of the equation). For this work, data points for density and speed 
of sound which deviate by more than 10% from the equation are classified as outliers. For 
isobaric and isochoric heat capacities as well as enthalpy differences, this maximum limit 
amounts to 20%. For VLE calculations, data points which deviate by more than 30% from the 
equation are considered as outliers. The algorithm for the calculation of many of these VLE 
points failed for various numerical reasons and, therefore, these points were not included in 
the statistics. Most of these points are located in the critical region or are poor data and with 
that provide bad initial estimates for the iterative VLE calculation. However, for individual 
data sets known to be very accurate, considerably lower limits were used. Therefore, along 
with the maximum limits, additional statistics were calculated (and analysed) for several 
intermediate lower limits. 

Along with the statistical parameters, the tabular listings in this appendix provide detailed 
information on the covered temperature, pressure, and composition ranges of all data sets 
used for the development and evaluation of the new wide-range equation of state. Table A2.1 
lists the data sets collected for thermal and caloric properties of binary mixtures consisting of 
the 18 natural gas components considered in this work (see Table 4.2). The data sets available 
for thermal and caloric properties of natural gases, similar gases, and other multi-component 
mixtures are provided in Table A2.2, and their compositions are listed in Table A2.3. 
Table A2.4 lists supplementary p T and VLE data for ternary and quaternary mixtures. The 
mixture compositions of the supplementary p T data are given in Table A2.5. In addition to 
Table 6.4, a differently ordered summary of the available data for binary mixtures is presented 
in Table A2.6. Table A2.7 summarises the available VLE data for binary mixtures and 
provides detailed information on the covered liquid and vapour phase compositions. Finally, 
Table A2.8 summarises the supplementary ternary and quaternary data. 
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Table A2.6 Summary of the available data for the 98 considered binary mixtures ordered first by the type of
thermodynamic property, and then by the type of binary combination 

Binary mixture Number of  Covered ranges 
 data points Temperature Pressure Compositionc,d

 totala usedb T/K p/MPa x

p T data          

Methane + X          
CH4–N2 3619 1465 82.0 – 673 0.04 – 507 0.02 – 0.90 
CH4–CO2 2392 1107 220 – 673 0.03 – 99.9 0.06 – 0.98 
CH4–C2H6 3759 2001 91.0 – 394 0.00 – 35.9 0.04 – 0.81 
CH4–C3H8 2901 1889 91.0 – 511 0.03 – 68.9 0.01 – 0.90 
CH4–n-C4H10 1681 879 108 – 573 0.1 – 68.9 0.01 – 1.00 
CH4–i-C4H10 593 582 95.0 – 511 0.04 – 34.5 0.04 – 0.84 
CH4–n-C5H12 1106 699 293 – 511 0.1 – 34.5 0.00 – 1.00 
CH4–i-C5H12 332 256 257 – 478 1.4 – 10.3 0.21 – 0.85 
CH4–n-C6H14 971 244 183 – 423 0.5 – 41.4 0.01 – 0.99 
CH4–n-C7H16 1038 292 278 – 511 0.3 – 69.8 0.00 – 0.99 
CH4–n-C8H18 89 89 223 – 423 1.0 – 7.1 0.00 – 0.97 
CH4–H2 1696 1427 130 – 600 0.2 – 107 0.05 – 0.91 
CH4–CO 456 447 116 – 353 0.4 – 160 0.03 – 0.80 
CH4–H2O 384 253 398 – 699 0.1 – 63.2 0.08 – 0.96 
CH4–Ar 36 36 91.0 – 143 0.1 – 122 0.15 – 0.84 

Nitrogen + X          
N2–CO2 2856 823 209 – 673 0.1 – 274 0.10 – 0.98 
N2–C2H6 812 564 105 – 478 0.2 – 62.1 0.00 – 0.96 
N2–C3H8 363 294 100 – 422 0.3 – 42.1 0.00 – 0.98 
N2–n-C4H10 942 925 270 – 478 0.2 – 68.9 0.02 – 0.91 
N2–i-C4H10 64 46 255 – 311 0.2 – 20.8 0.03 – 0.99 
N2–n-C5H12 84 78 277 – 378 0.3 – 20.8 0.01 – 1.00 
N2–i-C5H12 94 88 278 – 377 0.2 – 20.8 0.01 – 1.00 
N2–n-C8H18 144 143 293 – 373 25.0 – 100 0.79 
N2–H2 1488 1479 270 – 573 0.1 – 307 0.15 – 0.87 
N2–O2 79 – 66.9 – 333 0.1 – 15.7 0.20 – 0.89 
N2–CO 343 343 273 – 353 0.3 – 30.1 0.03 
N2–H2O 275 212 429 – 707 2.1 – 286 0.05 – 0.95 
N2–He 2669 1259 77.2 – 423 0.1 – 1027 0.06 – 0.99 
N2–Ar 767 652 73.8 – 423 0.01 – 800 0.16 – 0.84 

Carbon dioxide + X          
CO2–C2H6 2522 1266 220 – 478 0.03 – 68.9 0.01 – 0.90 
CO2–C3H8 1421 862 278 – 511 0.1 – 70.6 0.07 – 0.97 
CO2–n-C4H10 125 – 311 – 360 1.1 – 10.6 0.03 – 0.20 
CO2–i-C4H10 126 – 311 – 360 1.0 – 10.5 0.03 – 0.20 
CO2–n-C5H12 804 366 278 – 423 0.2 – 65.0 0.01 – 0.99 
CO2–i-C5H12 106 91 278 – 378 0.2 – 9.4 0.00 – 0.99 
CO2–n-C7H16 141 101 299 – 459 0.1 – 55.5 0.01 – 0.98 
CO2–H2 413 316 273 – 473 0.2 – 50.7 0.01 – 0.75 
CO2–CO 75 – 323 – 423 0.1 – 6.5 0.43 
CO2–H2O 448 446 323 – 699 0.1 – 34.6 0.02 – 0.79 
CO2–He 1401 1278 253 – 800 0.2 – 58.8 0.06 – 0.96 
CO2–Ar 572 496 288 – 373 0.3 – 101 0.06 – 0.87 
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Table A2.6 (continued)

Binary mixture Number of  Covered ranges 
 data points Temperature Pressure Compositionc,d

 totala usedb T/K p/MPa x

p T data (continued)          

Ethane + X          
C2H6–C3H8 697 360 108 – 322 0.00 – 13.8 0.00 – 0.89 
C2H6–n-C4H10 269 223 269 – 414 0.5 – 13.8 0.05 – 0.83 
C2H6–n-C5H12 1508 1422 278 – 511 0.1 – 68.9 0.01 – 0.90 
C2H6–n-C7H16 212 170 275 – 521 0.3 – 8.6 0.02 – 0.73 
C2H6–n-C8H18 64 51 273 – 373 0.4 – 5.3 0.02 – 0.95 
C2H6–H2 552 382 275 – 422 0.2 – 26.2 0.10 – 0.80 

Propane + X          
C3H8–n-C4H10 899 545 239 – 411 0.1 – 13.8 0.15 – 0.90 
C3H8–i-C4H10 788 495 200 – 400 0.1 – 35.4 0.15 – 0.86 
C3H8–n-C5H12 283 267 321 – 461 0.1 – 4.6 0.12 – 0.86 
C3H8–i-C5H12 640 628 273 – 573 0.1 – 8.1 0.10 – 0.90 
C3H8–n-C6H14 235 203 325 – 497 0.1 – 5.0 0.08 – 0.86 
C3H8–n-C8H18 155 136 313 – 550 0.7 – 5.9 0.04 – 0.79 
C3H8–H2O 55 47 529 – 663 20.0 – 330 0.29 – 0.98 
C3H8–H2 73 – 298 – 348 0.3 – 5.1 0.73 – 0.84 

n-Butane + X          
n-C4H10–i-C4H10 352 16 240 – 380 0.03 – 7.1 0.21 – 0.80 
n-C4H10–n-C5H12 73 65 358 – 464 1.0 – 3.7 0.13 – 0.86 
n-C4H10–n-C6H14 157 152 375 – 502 0.6 – 3.9 0.10 – 0.90 
n-C4H10–n-C7H16 255 250 329 – 530 0.3 – 4.1 0.06 – 0.84 
n-C4H10–n-C8H18 97 72 339 – 555 0.7 – 4.3 0.05 – 0.82 
n-C4H10–H2O 219 149 311 – 707 0.7 – 310 0.10 – 0.98 
n-C4H10–Ar 70 66 340 – 380 1.4 – 18.5 0.02 – 0.82 

Isobutane + X          
i-C4H10–H2O 66 – 547 – 695 13.5 – 306 0.50 – 0.98 

n-Pentane + X          
n-C5H12–n-C6H14 319 – 273 – 348 0.1 – 40.0 0.10 – 0.90 
n-C5H12–n-C7H16 326 – 273 – 348 0.1 – 40.0 0.10 – 0.90 
n-C5H12–n-C8H18 9 – 298 0.1 0.10 – 0.89 
n-C5H12–H2O 55 55 647 4.3 – 40.9 0.31 – 0.97 

n-Hexane + X          
n-C6H14–n-C7H16 452 35 273 – 363 0.1 – 71.7 0.09 – 0.91 
n-C6H14–n-C8H18 61 – 283 – 313 0.1 0.07 – 0.94 
n-C6H14–H2 423 193 278 – 511 1.4 – 68.9 0.19 – 0.79 
n-C6H14–H2O 940 88 327 – 699 0.1 – 247 0.01 – 0.96 

n-Heptane + X          
n-C7H16–n-C8H18 27 – 293 – 298 0.1 0.10 – 0.90 

n-Octane + X          
n-C8H18–H2O 28 28 623 3.1 – 15.3 0.15 – 0.77 

Hydrogen + X          
H2–CO 54 54 298 0.1 – 17.2 0.34 – 0.67 
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Table A2.6 (continued)

Binary mixture Number of  Covered ranges 
 data points Temperature Pressure Compositionc,d

 totala usedb T/K p/MPa x

p T data (continued)          

Oxygen + X          
O2–H2O 154 154 472 – 673 19.5 – 324 0.06 – 0.94 
O2–Ar 36 – 70.4 – 88.8 0.1 0.10 – 0.87 

Water + X          
H2O–Ar 152 152 477 – 663 10.4 – 337 0.05 – 0.80 

Helium + X          
He–Ar 500 – 143 – 323 0.2 – 72.3 0.20 – 0.78 

Total 51442 30252 66.9 – 800 0.00 – 1027 0.00 – 1.00 

Isochoric heat capacity          

Methane + X          
CH4–C2H6 785 625 101 – 335 67.1 – 588  0.10 – 0.84 

Carbon dioxide + X          
CO2–C2H6 259 – 218 – 341 67.6 – 902  0.26 – 0.75 

Ethane + X          
C2H6–n-C5H12 57 – 309 231 – 491  0.01 – 0.32 

Propane + X          
C3H8–i-C4H10 135 – 203 – 345 484 – 649  0.30 – 0.70 

Total 1236 625 101 – 345 67.1 – 902  0.01 – 0.84 

Speed of sound          

Methane + X          
CH4–N2 693 456 170 – 400 0.1 – 750 0.05 – 0.54 
CH4–CO2 324 324 200 – 450 0.1 – 17.3 0.05 – 0.30 
CH4–C2H6 810 411 200 – 375 0.00 – 20.1 0.05 – 0.65 
CH4–C3H8 225 222 213 – 375 0.05 – 17.0 0.10 – 0.15 
CH4–n-C4H10 43 – 311 2.1 – 17.2 0.11 – 0.84 
CH4–n-C8H18 144 71 293 – 373 25.0 – 100 0.02 

Nitrogen + X          
N2–CO2 65 65 250 – 350 0.5 – 10.3 0.50 
N2–C2H6 112 112 250 – 400 0.05 – 30.2 0.30 – 0.70 
N2–n-C8H18 144 144 293 – 373 25.0 – 100 0.79 
N2–He 112 – 157 – 298 200 – 1000 0.50 

Carbon dioxide + X          
CO2–C2H6 69 – 220 – 450 0.1 – 1.3 0.40 

n-Hexane + X          
n-C6H14–n-C7H16 28 – 298 0.1 0.01 – 0.96 

Helium + X          
He–Ar 50 – 298 198 – 1971 0.10 – 0.50 
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Table A2.6 (continued)

Binary mixture Number of  Covered ranges 
 data points Temperature Pressure Compositionc,d

 totala usedb T/K p/MPa x

Speed of sound (continued)          

Total 2819 1805 157 – 450 0.00 – 1971 0.01 – 0.96 

Isobaric heat capacity          

Methane + X          
CH4–N2 111 – 110 – 275 3.0 – 10.0 0.47 – 0.70 
CH4–CO2 249 – 313 – 424 0.2 – 15.5 0.58 – 0.86 
CH4–C2H6 98 72 110 – 350 0.6 – 30.0 0.15 – 0.29 
CH4–C3H8 280 215 100 – 422 1.7 – 13.8 0.09 – 0.77 

Nitrogen + X          
N2–CO2 203 203 313 – 363 0.2 – 16.5 0.68 – 0.93 
N2–C2H6 36 – 110 – 270 3.0 – 5.1 0.41 

Carbon dioxide + X          
CO2–C2H6 56 – 303 – 393 0.00 – 52.9 0.50 

Ethane + X          
C2H6–C3H8 16 – 120 – 270 5.1 0.39 

Propane + X          
C3H8–i-C4H10 23 – 293 – 353 0.1 – 1.2 0.50 

Total 1072 490 100 – 424 0.00 – 52.9 0.09 – 0.93 

Enthalpy differences          

Methane + X          
CH4–N2 247 – 107 – 367 0.1 – 10.0 0.10 – 0.75 
CH4–C2H6 896 22 110 – 525 0.2 – 16.5 0.06 – 0.75 
CH4–C3H8 238 99 110 – 366 0.00 – 14.0 0.05 – 0.32 

Nitrogen + X          
N2–C2H6 188 77 110 – 343 0.2 – 14.2 0.41 – 0.75 

Carbon dioxide + X          
CO2–C2H6 79 – 230 – 350 15.2 – 18.4 0.10 – 0.90 

Ethane + X          
C2H6–C3H8 156 – 110 – 343 0.1 – 14.2 0.20 – 0.39 

Total 1804 198 107 – 525 0.00 – 18.4 0.05 – 0.90 

Excess molar enthalpy          

Carbon dioxide + X          
CO2–n-C4H10 20 20 221 – 242 0.8 – 4.4 0.17 – 0.85 

Ethane + X          
C2H6–C3H8 157 – 323 – 373 5.0 – 15.0 0.01 – 0.98 

Total 177 20 221 – 373 0.8 – 15.0 0.01 – 0.98 
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Table A2.6 (continued)

Binary mixture Number of  Covered ranges 
 data points Temperature Pressure Compositionc,d

 totala usedb T/K p/MPa x

Second acoustic virial coefficient 

Methane + X          
CH4–C2H6 9 – 200 – 375   0.20 
CH4–C3H8 12 – 225 – 375   0.15 

Total 21 – 200 – 375 0.15 – 0.20 

Saturated liquid densitye          

Methane + X          
CH4–N2 197 21 95.0 – 183 0.1 – 4.9 0.00 – 1.00 
CH4–C2H6 45 20 105 – 250 0.03 – 6.3 0.10 – 0.95 
CH4–C3H8 20 20 105 – 130 0.03 – 0.3 0.14 – 0.70 
CH4–n-C4H10 31 31 105 – 140 0.1 – 0.6 0.07 – 0.41 
CH4–i-C4H10 17 17 110 – 140 0.1 – 0.6 0.08 – 0.51 

Nitrogen + X          
N2–CO2 23 – 209 – 268 10.8 – 21.4 0.40 – 0.50 
N2–C2H6 11 4 105 – 138 0.4 – 2.8 0.73 – 0.96 
N2–C3H8 6 6 100 – 115 0.4 – 0.9 0.93 – 0.98 
N2–n-C4H10 30 – 339 – 380 1.2 – 22.1 0.50 – 0.98 

Carbon dioxide + X          
CO2–C3H8 51 – 278 – 311 0.7 – 6.7 0.06 – 0.98 
CO2–i-C4H10 29 – 311 – 394 0.7 – 7.2 0.12 – 0.97 

Total 460 119 95.0 – 394 0.03 – 22.1 0.00 – 1.00 

VLE data          

Methane + X          
CH4–N2 1237 439 78.4 – 190 0.02 – 5.1 0.00 – 1.00 
CH4–CO2 616 156 143 – 301 0.9 – 8.5 0.00 – 0.99 
CH4–C2H6 901 183 111 – 302 0.01 – 6.9 0.00 – 0.99 
CH4–C3H8 558 266 91.7 – 363 0.00 – 10.2 0.00 – 1.00 
CH4–n-C4H10 603 117 144 – 411 0.1 – 13.3 0.02 – 1.00 
CH4–i-C4H10 171 110 198 – 378 0.5 – 11.8 0.02 – 1.00 
CH4–n-C5H12 812 40 173 – 461 0.1 – 17.1 0.03 – 1.00 
CH4–i-C5H12 29 13 344 – 450 2.8 – 6.9 0.70 – 1.00 
CH4–n-C6H14 472 52 182 – 444 0.1 – 19.8 0.00 – 0.99 
CH4–n-C7H16 218 44 200 – 511 0.01 – 24.9 0.10 – 0.99 
CH4–n-C8H18 35 28 298 – 423 1.0 – 7.1 0.71 – 0.97 
CH4–H2 110 90 90.3 – 174 1.0 – 27.6 0.00 – 0.35 
CH4–O2 3 – 93.2 – 107 0.1 – 0.4 0.9989 – 0.9990 
CH4–CO 55 54 91.4 – 178 0.03 – 4.7 0.03 – 0.97 
CH4–He 520 489 93.2 – 194 0.1 – 26.2 0.00 – 0.34 
CH4–Ar 163 51 105 – 178 0.2 – 5.1 0.02 – 0.96 

Nitrogen + X          
N2–CO2 380 115 209 – 303 1.0 – 21.4 0.40 – 1.00 
N2–C2H6 901 79 92.8 – 302 0.02 – 13.5 0.00 – 1.00 
N2–C3H8 349 117 78.0 – 353 0.03 – 21.9 0.47 – 1.00 
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Table A2.6 (continued)

Binary mixture Number of  Covered ranges 
 data points Temperature Pressure Compositionc,d

 totala usedb T/K p/MPa x

VLE data (continued)          

Nitrogen + X (continued)          
N2–n-C4H10 292 108 153 – 422 0.2 – 29.1 0.39 – 1.00 
N2–i-C4H10 98 31 120 – 394 0.2 – 20.8 0.54 – 1.00 
N2–n-C5H12 42 37 277 – 378 0.3 – 20.8 0.60 – 1.00 
N2–i-C5H12 47 46 278 – 377 0.2 – 20.8 0.56 – 1.00 
N2–n-C6H14 52 25 311 – 444 1.7 – 34.5 0.40 – 0.98 
N2–n-C7H16 114 41 305 – 497 1.2 – 69.1 0.28 – 0.99 
N2–n-C8H18 26 – 293 – 373 3.2 – 35.0 0.65 – 1.00 
N2–H2 45 19 77.4 – 113 0.5 – 15.2 0.01 – 0.39 
N2–O2 526 475 63.0 – 136 0.00 – 3.0 0.01 – 1.00 
N2–CO 117 106 70.0 – 123 0.02 – 2.7 0.07 – 1.00 
N2–He 585 – 64.9 – 126 1.2 – 83.1 0.00 – 0.58 
N2–Ar 487 399 72.2 – 134 0.1 – 2.8 0.00 – 0.98 

Carbon dioxide + X          
CO2–C2H6 492 216 207 – 298 0.3 – 6.6 0.01 – 0.99 
CO2–C3H8 619 89 211 – 361 0.1 – 6.9 0.02 – 0.99 
CO2–n-C4H10 438 223 228 – 418 0.03 – 8.2 0.06 – 1.00 
CO2–i-C4H10 94 73 311 – 394 0.6 – 7.4 0.10 – 0.99 
CO2–n-C5H12 214 72 253 – 459 0.2 – 9.9 0.02 – 0.99 
CO2–i-C5H12 53 36 278 – 378 0.2 – 9.4 0.03 – 0.99 
CO2–n-C6H14 20 20 298 – 313 0.4 – 7.7 0.08 – 0.95 
CO2–n-C7H16 64 44 311 – 477 0.2 – 13.3 0.05 – 0.98 
CO2–n-C8H18 20 16 313 – 348 1.5 – 11.4 0.11 – 0.86 
CO2–H2 138 68 220 – 298 1.1 – 20.3 0.00 – 0.16 
CO2–O2 144 – 223 – 283 1.0 – 13.2 0.00 – 0.78 
CO2–H2O 201 – 383 – 623 10.0 – 350 0.57 – 1.00 
CO2–He 30 – 253 – 293 3.0 – 14.1 0.00 – 0.05 
CO2–Ar 31 10 233 – 288 2.6 – 13.2 0.03 – 0.35 

Ethane + X          
C2H6–C3H8 494 286 128 – 369 0.00 – 5.2 0.00 – 1.00 
C2H6–n-C4H10 379 114 235 – 419 0.2 – 5.8 0.05 – 0.98 
C2H6–i-C4H10 99 34 203 – 394 0.00 – 5.4 0.04 – 0.98 
C2H6–n-C5H12 67 59 278 – 444 0.3 – 6.8 0.02 – 1.00 
C2H6–n-C6H14 46 43 298 – 450 0.2 – 7.9 0.08 – 0.99 
C2H6–n-C7H16 533 – 235 – 540 0.3 – 8.8 0.02 – 1.00 
C2H6–n-C8H18 82 47 273 – 373 0.4 – 6.8 0.02 – 0.95 
C2H6–H2 117 61 139 – 283 0.7 – 53.3 0.00 – 0.40 
C2H6–CO 22 21 173 – 273 0.9 – 11.7 0.01 – 0.83 

Propane + X          
C3H8–n-C4H10 459 60 237 – 420 0.03 – 11.0 0.05 – 0.99 
C3H8–i-C4H10 288 148 237 – 394 0.04 – 4.2 0.00 – 1.00 
C3H8–n-C5H12 258 – 321 – 468 0.4 – 4.5 0.04 – 1.00 
C3H8–i-C5H12 89 78 273 – 453 0.1 – 4.6 0.02 – 0.97 
C3H8–n-C6H14 401 – 288 – 497 0.1 – 5.0 0.02 – 0.96 
C3H8–n-C7H16 197 40 333 – 533 2.1 – 5.2 0.02 – 0.98 
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Table A2.6 (continued)

Binary mixture Number of  Covered ranges 
 data points Temperature Pressure Compositionc,d

 totala usedb T/K p/MPa x

VLE data (continued)          

Propane + X (continued)          
C3H8–H2 215 140 172 – 361 1.4 – 55.2 0.01 – 0.67 
C3H8–CO 37 37 148 – 323 1.4 – 15.2 0.02 – 0.43 

n-Butane + X          
n-C4H10–i-C4H10 228 197 273 – 374 0.1 – 2.0 0.02 – 0.98 
n-C4H10–n-C5H12 195 – 298 – 464 0.1 – 3.7 0.10 – 0.98 
n-C4H10–n-C6H14 365 – 358 – 502 0.6 – 3.9 0.10 – 0.90 
n-C4H10–n-C7H16 477 – 329 – 540 0.3 – 4.1 0.02 – 0.99 
n-C4H10–H2 64 62 328 – 394 2.8 – 16.9 0.02 – 0.27 
n-C4H10–H2Oy 51 – 600 – 700 19.3 – 276 0.65 – 0.98 
n-C4H10–Ar 35 21 340 – 380 1.4 – 18.5 0.02 – 0.56 

Isobutane + X          
i-C4H10–H2 21 – 311 – 394 3.4 – 20.7 0.02 – 0.25 
i-C4H10–H2Oy 77 – 547 – 695 13.5 – 306 0.50 – 0.98 

n-Pentane + X          
n-C5H12–i-C5H12 13 – 328 – 385 0.2 – 0.8 0.02 – 0.94 
n-C5H12–n-C6H14 8 – 298 0.03 – 0.1 0.10 – 0.89 
n-C5H12–n-C7H16 26 – 404 – 526 1.0 – 3.1 0.10 – 0.90 
n-C5H12–n-C8H18 61 – 292 – 434 0.1 – 1.5 0.05 – 0.95 

n-Hexane + X          
n-C6H14–n-C7H16 29 14 303 – 367 0.01 – 0.1 0.03 – 0.97 
n-C6H14–H2 134 98 278 – 478 0.03 – 68.9 0.01 – 0.69 

n-Heptane + X          
n-C7H16–n-C8H18 43 20 313 – 394 0.00 – 0.1 0.04 – 0.97 
n-C7H16–H2 29 27 424 – 499 2.5 – 78.5 0.02 – 0.81 

Hydrogen + X          
H2–CO 81 80 68.2 – 122 1.7 – 24.1 0.35 – 0.97 
H2–He 264 – 15.5 – 32.5 0.2 – 10.4 0.00 – 0.36 

Oxygen + X          
O2–He 37 – 77.4 – 143 1.7 – 13.8 0.00 – 0.09 
O2–Ar 616 51 83.8 – 139 0.1 – 2.6 0.00 – 1.00 

Carbon monoxide + X          
CO–He 98 – 77.4 – 128 0.7 – 13.8 0.00 – 0.17 
CO–Ar 16 15 123 – 137 1.5 – 3.8 0.06 – 0.92 

Helium + X          
He–Ar 288 – 91.4 – 160 1.4 – 422 0.40 – 1.00 

Total 20161 6350 15.5 – 700 0.00 – 422 0.00 – 1.00 

Total 79192 39859 15.5 – 800 0.00 – 1971 0.00 – 1.00 
a Number of all available data points. 
b Number of data points used for the development of the GERG-2004 equation of state. 
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Table A2.6 (continued)
c Mole fractions of component X. Values of 0.00 and 1.00 result from a mixture composition close to a pure 

component. 
d Mole fractions of component X in the saturated liquid phase for VLE data, unless otherwise stated. 
e Listed separately due to a different data format. Saturated liquid (and vapour) densities may also be tabulated 

as ordinary p T or VLE data. 
y VLE data set contains pTy data only. The specified composition range indicates mole fractions of component

X in the saturated vapour phase. 
 Density in kg·m 3 instead of pressure. 
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Table A2.8 Summary of the supplementary data for ternary and quaternary mixtures 

Ternary/quaternary mixture NP
a Covered ranges Distribution of 

  Temperature Pressure VLE data points 
T/K p/MPa pTxyb pTxc pTyd

p T data         

Methane + X + Y         
CH4–N2–CO2 271 323 – 573 19.9 – 99.9    
CH4–N2–C2H6 14 91.0 – 298 0.05 – 17.1    
CH4–N2–C3H8 2 91.0 – 108 0.1 – 0.2    
CH4–N2–n-C6H14 204 270 – 353 0.5 – 17.8    
CH4–N2–H2 537 144 – 473 0.4 – 70.9    
CH4–CO2–C2H6 147 283 – 333 0.1 – 8.6    
CH4–C2H6–C3H8 10 91.0 – 115 0.03 – 0.1    
CH4–C3H8–n-C6H14 62 281 – 313 1.9 – 10.2    

Nitrogen + X + Y         
N2–CO2–H2 90 273 – 473 5.1 – 50.7    

Carbon dioxide + X + Y + Z         
CO2–C3H8–n-C5H12–n-C8H18 30 311 – 394 3.1 – 6.4    

Propane + X + Y         
C3H8–n-C4H10–i-C4H10 319 240 – 380 0.1 – 7.1    
C3H8–n-C5H12–n-C8H18 4 297 – 394 2.0 – 2.7    

n-Pentane + X + Y         
n-C5H12–n-C6H14–n-C7H16 315 298 – 348 0.1 – 40.0    

Total 2005 91.0 – 573 0.03 – 99.9 

VLE data         

Methane + X + Y         
CH4–N2–CO2 53 293 6.0 – 8.3 53 – – 
CH4–N2–Ar 37 112 – 123 0.2 – 2.4 31 3 3 
CH4–CO2–C2H6 105 230 – 250 1.2 – 6.6 99 – 6 
CH4–CO2–C3H8 63 230 – 270 0.8 – 8.0 59 1 3 

Nitrogen + X + Y         
N2–CO2–C3H8 47 240 – 330 2.0 – 13.0 35 3 9 
N2–CO2–n-C4H10 121 250 – 411 1.5 – 27.6 119 – 2 
N2–O2–Ar 1657 77.8 – 136 0.1 – 2.6 1656 – 1 

Carbon dioxide + X + Y + Z         
CO2–C3H8–n-C5H12–n-C8H18 15 311 – 394 3.1 – 6.4 15 – – 

Ethane + X + Y         
C2H6–C3H8–n-C4H10 59 305 – 306 0.7 – 4.9 59 – – 
C2H6–n-C4H10–n-C7H16 127 339 – 450 3.1 – 8.3 108 10 9 

Total 2284 77.8 – 450 0.1 – 27.6 2234 17 33 

Total 4289 77.8 – 573 0.03 – 99.9 
a Number of data points. 
b Number of pTxy data points. 
c Number of pTx data points. 
d Number of pTy data points. 
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A3 Parameters and Coefficients of the New Equation of State 
(GERG-2004)

Table A3.1 Coefficients and parameters of o
o
i , Eq. (7.5), for the considered 18 componentsa

k n i ko
o

, o
o

i k, k n i ko
o

, o
o

i k,

Methane
1 19.597538587 – 5 0.004600000 0.936220902 
2 83.959667892 – 6 8.744320000 5.577233895 
3 3.000880000 – 7 4.469210000 5.722644361 
4 0.763150000 4.306474465    

Nitrogen
1 11.083437707 – 5 0.146600000 5.393067706 
2 22.202102428 – 6 0.900660000 13.788988208 
3 2.500310000 – 7 – – 
4 0.137320000 5.251822620    

Carbon dioxide 
1 11.925182741 – 5 1.060440000 2.844425476 
2 16.118762264 – 6 2.033660000 1.589964364 
3 2.500020000 – 7 0.013930000 1.121596090 
4 2.044520000 3.022758166    

Ethane
1 24.675465518 – 5 1.237220000 0.731306621 
2 77.425313760 – 6 13.197400000 3.378007481 
3 3.002630000 – 7 6.019890000 3.508721939 
4 4.339390000 1.831882406    

Propane
1 31.602934734 – 5 3.197000000 0.543210978 
2 84.463284382 – 6 19.192100000 2.583146083 
3 3.029390000 – 7 8.372670000 2.777773271 
4 6.605690000 1.297521801    

n-Butane
1 20.884168790 – 5 6.894060000 0.431957660 
2 91.638478026 – 6 24.461800000 4.502440459 
3 3.339440000 – 7 14.782400000 2.124516319 
4 9.448930000 1.101487798    
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Table A3.1 (continued)

k n i ko
o

, o
o

i k, k n i ko
o

, o
o

i k,

Isobutane
1 20.413751434 – 5 5.251560000 0.485556021 
2 94.467620036 – 6 25.142300000 4.671261865 
3 3.067140000 – 7 16.138800000 2.191583480 
4 8.975750000 1.074673199    

n-Pentane
1 14.536635738 – 5 21.836000000 1.789520971 
2 89.919548319 – 6 33.403200000 3.777411113 
3 3.000000000 – 7 – – 
4 8.950430000 0.380391739    

Isopentane
1 15.449937973 – 5 20.110100000 1.977271641 
2 101.298172792 – 6 33.168800000 4.169371131 
3 3.000000000 – 7 – – 
4 11.761800000 0.635392636    

n-Hexane
1 14.345993081 – 5 26.814200000 1.691951873 
2 96.165722367 – 6 38.616400000 3.596924107 
3 3.000000000 – 7 – – 
4 11.697700000 0.359036667    

n-Heptane
1 15.063809621 – 5 30.470700000 1.548136560 
2 97.345252349 – 6 43.556100000 3.259326458 
3 3.000000000 – 7 – – 
4 13.726600000 0.314348398    

n-Octane
1 15.864709639 – 5 33.802900000 1.431644769 
2 97.370667555 – 6 48.173100000 2.973845992 
3 3.000000000 – 7 – – 
4 15.686500000 0.279143540    

Hydrogen
1 13.796474934 – 5 0.454440000 9.847634830 
2 175.864487294 – 6 1.560390000 49.765290750 
3 1.479060000 – 7 1.375600000 50.367279301 
4 0.958060000 6.891654113    
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Table A3.1 (continued)

k n i ko
o

, o
o

i k, k n i ko
o

, o
o

i k,

Oxygen
1 10.001874708 – 5 1.013340000 7.223325463 
2 14.996095135 – 6 – – 
3 2.501460000 – 7 – – 
4 1.075580000 14.461722565    

Carbon monoxide 
1 10.814500335 – 5 0.004930000 5.305158133 
2 19.843695435 – 6 – – 
3 2.500550000 – 7 – – 
4 1.028650000 11.675075301    

Water
1 8.203553050 – 5 0.987630000 1.763895929 
2 11.996306443 – 6 3.069040000 3.874803739 
3 3.003920000 – 7 – – 
4 0.010590000 0.415386589    

Helium 
1 13.628441975 – 5 – – 
2 143.470759602 – 6 – – 
3 1.500000000 – 7 – – 
4 – –    

Argon
1 8.316662546 – 5 – – 
2 4.946502600 – 6 – – 
3 1.500000000 – 7 – – 
4 – –    

a The values of the coefficients and parameters are also valid for Eq. (4.15). 



474 Appendix

Table A3.2 Coefficients and exponents of o
r
i , Eq. (7.7), for propane, n-butane, isobutane, 

n-pentane, isopentane, n-hexane, n-heptane, n-octane, oxygen, carbon monoxide, and 
argona,b

k n i ko , n i ko , n i ko ,

Propane n-Butane Isobutane 
1 0.10403973107358 101 0.10626277411455 101 0.10429331589100 101

2 0.28318404081403 101 0.28620951828350 101 0.28184272548892 101

3 0.84393809606294 0.88738233403777 0.86176232397850 
4 0.76559591850023 10 1 0.12570581155345 0.10613619452487 
5 0.94697373057280 10 1 0.10286308708106 0.98615749302134 10 1

6 0.24796475497006 10 3 0.25358040602654 10 3 0.23948208682322 10 3

7 0.27743760422870 0.32325200233982 0.30330004856950 
8 0.43846000648377 10 1 0.37950761057432 10 1 0.41598156135099 10 1

9 0.26991064784350 0.32534802014452 0.29991937470058 
10 0.69313413089860 10 1 0.79050969051011 10 1 0.80369342764109 10 1

11 0.29632145981653 10 1 0.20636720547775 10 1 0.29761373251151 10 1

12 0.14040126751380 10 1 0.57053809334750 10 2 0.13059630303140 10 1

n-Pentane Isopentane n-Hexane 
1 0.10968643098001 101 0.11017531966644 101 0.10553238013661 101

2 0.29988888298061 101 0.30082368531980 101 0.26120615890629 101

3 0.99516886799212 0.99411904271336 0.76613882967260 
4 0.16170708558539 0.14008636562629 0.29770320622459 
5 0.11334460072775 0.11193995351286 0.11879907733358 
6 0.26760595150748 10 3 0.29548042541230 10 3 0.27922861062617 10 3

7 0.40979881986931 0.36370108598133 0.46347589844105 
8 0.40876423083075 10 1 0.48236083488293 10 1 0.11433196980297 10 1

9 0.38169482469447 0.35100280270615 0.48256968738131 
10 0.10931956843993 0.10185043812047 0.93750558924659 10 1

11 0.32073223327990 10 1 0.35242601785454 10 1 0.67273247155994 10 2

12 0.16877016216975 10 1 0.19756797599888 10 1 0.51141583585428 10 2

n-Heptane n-Octane Oxygen 
1 0.10543747645262 101 0.10722544875633 101 0.88878286369701 
2 0.26500681506144 101 0.24632951172003 101 0.24879433312148 101

3 0.81730047827543 0.65386674054928 0.59750190775886 
4 0.30451391253428 0.36324974085628 0.96501817061881 10 2

5 0.12253868710800 0.12713269626764 0.71970428712770 10 1

6 0.27266472743928 10 3 0.30713572777930 10 3 0.22337443000195 10 3

7 0.49865825681670 0.52656856987540 0.18558686391474 
8 0.71432815084176 10 3 0.19362862857653 10 1 0.38129368035760 10 1

9 0.54236895525450 0.58939426849155 0.15352245383006 
10 0.13801821610756 0.14069963991934 0.26726814910919 10 1

11 0.61595287380011 10 2 0.78966330500036 10 2 0.25675298677127 10 1

12 0.48602510393022 10 3 0.33036597968109 10 2 0.95714302123668 10 2
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Table A3.2 (continued)

k n i ko , n i ko ,

Carbon monoxide Argon  
1 0.92310041400851 0.85095714803969  
2 0.24885845205800 101 0.24003222943480 101

3 0.58095213783396 0.54127841476466  
4 0.28859164394654 10 1 0.16919770692538 10 1

5 0.70256257276544 10 1 0.68825965019035 10 1

6 0.21687043269488 10 3 0.21428032815338 10 3

7 0.13758331015182 0.17429895321992  
8 0.51501116343466 10 1 0.33654495604194 10 1

9 0.14865357483379 0.13526799857691  
10 0.38857100886810 10 1 0.16387350791552 10 1

11 0.29100433948943 10 1 0.24987666851475 10 1

12 0.14155684466279 10 1 0.88769204815709 10 2

k c i ko , d i ko , t i ko ,

 1 – 1 0.250  
 2 – 1 1.125  
 3 – 1 1.500  
 4 – 2 1.375  
 5 – 3 0.250  
 6 – 7 0.875  
 7 1 2 0.625  
 8 1 5 1.750  
 9 2 1 3.625  
 10 2 4 3.625  
 11 3 3 14.500  
 12 3 4 12.000  
a The values of the coefficients and exponents are also valid for Eq. (4.27). 
b KPol,i = 6, KExp,i = 6. 
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Table A3.3 Coefficients and exponents of o
r
i , Eq. (7.7), for methane, nitrogen, and ethanea,b

k n i ko , n i ko , n i ko ,

Methane Nitrogen Ethane 
1 0.57335704239162 0.59889711801201 0.63596780450714 
2 0.16760687523730 101 0.16941557480731 101 0.17377981785459 101

3 0.23405291834916 0.24579736191718 0.28914060926272 
4 0.21947376343441 0.23722456755175 0.33714276845694 
5 0.16369201404128 10 1 0.17954918715141 10 1 0.22405964699561 10 1

6 0.15004406389280 10 1 0.14592875720215 10 1 0.15715424886913 10 1

7 0.98990489492918 10 1 0.10008065936206 0.11450634253745 
8 0.58382770929055 0.73157115385532 0.10612049379745 101

9 0.74786867560390 0.88372272336366 0.12855224439423 101

10 0.30033302857974 0.31887660246708 0.39414630777652 
11 0.20985543806568 0.20766491728799 0.31390924682041 
12 0.18590151133061 10 1 0.19379315454158 10 1 0.21592277117247 10 1

13 0.15782558339049 0.16936641554983 0.21723666564905 
14 0.12716735220791 0.13546846041701 0.28999574439489 
15 0.32019743894346 10 1 0.33066712095307 10 1 0.42321173025732 
16 0.68049729364536 10 1 0.60690817018557 10 1 0.46434100259260 10 1

17 0.24291412853736 10 1 0.12797548292871 10 1 0.13138398329741 
18 0.51440451639444 10 2 0.58743664107299 10 2 0.11492850364368 10 1

19 0.19084949733532 10 1 0.18451951971969 10 1 0.33387688429909 10 1

20 0.55229677241291 10 2 0.47226622042472 10 2 0.15183171583644 10 1

21 0.44197392976085 10 2 0.52024079680599 10 2 0.47610805647657 10 2

22 0.40061416708429 10 1 0.43563505956635 10 1 0.46917166277885 10 1

23 0.33752085907575 10 1 0.36251690750939 10 1 0.39401755804649 10 1

24 0.25127658213357 10 2 0.28974026866543 10 2 0.32569956247611 10 2

k c i ko , d i ko , t i ko , k c i ko , d i ko , t i ko ,

1 – 1 0.125 13 2 2 4.500 
2 – 1 1.125 14 2 3 4.750 
3 – 2 0.375 15 2 3 5.000 
4 – 2 1.125 16 2 4 4.000 
5 – 4 0.625 17 2 4 4.500 
6 – 4 1.500 18 3 2 7.500 
7 1 1 0.625 19 3 3 14.000 
8 1 1 2.625 20 3 4 11.500 
9 1 1 2.750 21 6 5 26.000 

10 1 2 2.125 22 6 6 28.000 
11 1 3 2.000 23 6 6 30.000 
12 1 6 1.750 24 6 7 16.000 

a The values of the coefficients and exponents are also valid for Eq. (4.27). 
b KPol,i = 6, KExp,i = 18. 
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Table A3.4 Coefficients and exponents of o
r
i , Eq. (7.7), for carbon dioxide, hydrogen, water, and 

heliuma

k c i ko , d i ko , t i ko , n i ko ,

Carbon dioxideb

1 – 1 0.000 0.52646564804653 
2 – 1 1.250 0.14995725042592 101

3 – 2 1.625 0.27329786733782 
4 – 3 0.375 0.12949500022786 
5 1 3 0.375 0.15404088341841 
6 1 3 1.375 0.58186950946814 
7 1 4 1.125 0.18022494838296 
8 1 5 1.375 0.95389904072812 10 1

9 1 6 0.125 0.80486819317679 10 2

10 1 6 1.625 0.35547751273090 10 1

11 2 1 3.750 0.28079014882405 
12 2 4 3.500 0.82435890081677 10 1

13 3 1 7.500 0.10832427979006 10 1

14 3 1 8.000 0.67073993161097 10 2

15 3 3 6.000 0.46827907600524 10 2

16 3 3 16.000 0.28359911832177 10 1

17 3 4 11.000 0.19500174744098 10 1

18 5 5 24.000 0.21609137507166 
19 5 5 26.000 0.43772794926972 
20 5 5 28.000 0.22130790113593 
21 6 5 24.000 0.15190189957331 10 1

22 6 5 26.000 0.15380948953300 10 1

Hydrogenc

1 – 1 0.500 0.53579928451252 101

2 – 1 0.625 0.62050252530595 101

3 – 2 0.375 0.13830241327086 
4 – 2 0.625 0.71397954896129 10 1

5 – 4 1.125 0.15474053959733 10 1

6 1 1 2.625 0.14976806405771 
7 1 5 0.000 0.26368723988451 10 1

8 1 5 0.250 0.56681303156066 10 1

9 1 5 1.375 0.60063958030436 10 1

10 2 1 4.000 0.45043942027132 
11 2 1 4.250 0.42478840244500 
12 3 2 5.000 0.21997640827139 10 1

13 3 5 8.000 0.10499521374530 10 1

14 5 1 8.000 0.28955902866816 10 2
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Table A3.4 (continued)

k c i ko , d i ko , t i ko , n i ko ,

Waterd

1 – 1 0.500 0.82728408749586 
2 – 1 1.250 0.18602220416584 101

3 – 1 1.875 0.11199009613744 101

4 – 2 0.125 0.15635753976056 
5 – 2 1.500 0.87375844859025 
6 – 3 1.000 0.36674403715731 
7 – 4 0.750 0.53987893432436 10 1

8 1 1 1.500 0.10957690214499 101

9 1 5 0.625 0.53213037828563 10 1

10 1 5 2.625 0.13050533930825 10 1

11 2 1 5.000 0.41079520434476 
12 2 2 4.000 0.14637443344120 
13 2 4 4.500 0.55726838623719 10 1

14 3 4 3.000 0.11201774143800 10 1

15 5 1 4.000 0.66062758068099 10 2

16 5 1 6.000 0.46918522004538 10 2

Heliume

1 – 1 0.000 0.45579024006737 
2 – 1 0.125 0.12516390754925 101

3 – 1 0.750 0.15438231650621 101

4 – 4 1.000 0.20467489707221 10 1

5 1 1 0.750 0.34476212380781 
6 1 3 2.625 0.20858459512787 10 1

7 1 5 0.125 0.16227414711778 10 1

8 1 5 1.250 0.57471818200892 10 1

9 1 5 2.000 0.19462416430715 10 1

10 2 2 1.000 0.33295680123020 10 1

11 3 1 4.500 0.10863577372367 10 1

12 3 2 5.000 0.22173365245954 10 1

a The values of the coefficients and exponents are also valid for Eq. (4.27). 
b KPol,i = 4, KExp,i = 18. 
c KPol,i = 5, KExp,i = 9. 
d KPol,i = 7, KExp,i = 9. 
e KPol,i = 4, KExp,i = 8. 
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Table A3.5 Critical parameters and molar masses of the considered 18 components 

Component i Formula c,i /(mol·dm 3) T ic, /K Mi /(g·mol 1)a

Methane CH4 10.139342719 190.564000000 16.042460 
Nitrogen N2 11.183900000 126.192000000 28.013400 
Carbon dioxide CO2 10.624978698 304.128200000 44.009500 
Ethane C2H6 6.870854540 305.322000000 30.069040 
Propane C3H8 5.000043088 369.825000000 44.095620 
n-Butane n-C4H10 3.920016792 425.125000000 58.122200 
Isobutane i-C4H10 3.860142940 407.817000000 58.122200 
n-Pentane n-C5H12 3.215577588 469.700000000 72.148780 
Isopentane i-C5H12 3.271018581 460.350000000 72.148780 
n-Hexane n-C6H14 2.705877875 507.820000000 86.175360 
n-Heptane n-C7H16 2.315324434 540.130000000 100.201940 
n-Octane n-C8H18 2.056404127 569.320000000 114.228520 
Hydrogen H2 14.940000000 33.190000000 2.015880 
Oxygen O2 13.630000000 154.595000000 31.998800 
Carbon monoxide CO 10.850000000 132.800000000 28.010100 
Water H2O 17.873716090 647.096000000 18.015280 
Helium He 17.399000000 5.195300000 4.002602 
Argon Ar 13.407429659 150.687000000 39.948000 
a According to Wieser (2006). 

Table A3.6 Non-zero Fij  parameters of r , Eq. (7.3), for the binary mixtures taken into account by 
binary specific and generalised departure functionsa

Mixture i–j Fij

Methane–Nitrogen 0.100000000000 101

Methane–Carbon dioxide 0.100000000000 101

Methane–Ethane 0.100000000000 101

Methane–Propane 0.100000000000 101

Methane–n-Butane 0.100000000000 101

Methane–Isobutane 0.771035405688 
Methane–Hydrogen 0.100000000000 101

Nitrogen–Carbon dioxide 0.100000000000 101

Nitrogen–Ethane 0.100000000000 101

Ethane–Propane 0.130424765150 
Ethane–n-Butane 0.281570073085 
Ethane–Isobutane 0.260632376098 

Propane–n-Butane 0.312572600489 10 1

Propane–Isobutane 0.551609771024 10 1

n-Butane–Isobutane 0.551240293009 10 1

a The values of Fij  equal zero for all other binary combinations. 
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Table A3.7 Coefficients and exponents of ij
r , Eq. (7.8), for the binary mixtures taken into account

by binary specific and generalised departure functions 

k dij k, tij k, nij k, ij k, ij k, ij k, ij k,

Methane–Nitrogena

1 1 0.000 0.98038985517335 10 2 – – – – 
2 4 1.850 0.42487270143005 10 3 – – – – 
3 1 7.850 0.34800214576142 10 1 1.000 0.500 1.000 0.500 
4 2 5.400 0.13333813013896 1.000 0.500 1.000 0.500 
5 2 0.000 0.11993694974627 10 1 0.250 0.500 2.500 0.500 
6 2 0.750 0.69243379775168 10 1 0.000 0.500 3.000 0.500 
7 2 2.800 0.31022508148249 0.000 0.500 3.000 0.500 
8 2 4.450 0.24495491753226 0.000 0.500 3.000 0.500 
9 3 4.250 0.22369816716981 0.000 0.500 3.000 0.500 

Methane–Carbon dioxideb

1 1 2.600 0.10859387354942 – – – – 
2 2 1.950 0.80228576727389 10 1 – – – – 
3 3 0.000 0.93303985115717 10 2 – – – – 
4 1 3.950 0.40989274005848 10 1 1.000 0.500 1.000 0.500 
5 2 7.950 0.24338019772494 0.500 0.500 2.000 0.500 
6 3 8.000 0.23855347281124 0.000 0.500 3.000 0.500 

Methane–Ethanec

1 3 0.650 0.80926050298746 10 3 – – – – 
2 4 1.550 0.75381925080059 10 3 – – – – 
3 1 3.100 0.41618768891219 10 1 1.000 0.500 1.000 0.500 
4 2 5.900 0.23452173681569 1.000 0.500 1.000 0.500 
5 2 7.050 0.14003840584586 1.000 0.500 1.000 0.500 
6 2 3.350 0.63281744807738 10 1 0.875 0.500 1.250 0.500 
7 2 1.200 0.34660425848809 10 1 0.750 0.500 1.500 0.500 
8 2 5.800 0.23918747334251 0.500 0.500 2.000 0.500 
9 2 2.700 0.19855255066891 10 2 0.000 0.500 3.000 0.500 

10 3 0.450 0.61777746171555 101 0.000 0.500 3.000 0.500 
11 3 0.550 0.69575358271105 101 0.000 0.500 3.000 0.500 
12 3 1.950 0.10630185306388 101 0.000 0.500 3.000 0.500 

Methane–Propaned

1 3 1.850 0.13746429958576 10 1 – – – – 
2 3 3.950 0.74425012129552 10 2 – – – – 
3 4 0.000 0.45516600213685 10 2 – – – – 
4 4 1.850 0.54546603350237 10 2 – – – – 
5 4 3.850 0.23682016824471 10 2 – – – – 
6 1 5.250 0.18007763721438 0.250 0.500 0.750 0.500 
7 1 3.850 0.44773942932486 0.250 0.500 1.000 0.500 
8 1 0.200 0.19327374888200 10 1 0.000 0.500 2.000 0.500 
9 2 6.500 0.30632197804624 0.000 0.500 3.000 0.500 
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Table A3.7 (continued)

k dij k, tij k, nij k, ij k, ij k, ij k, ij k,

Nitrogen–Carbon dioxidee

1 2 1.850 0.28661625028399 – – – – 
2 3 1.400 0.10919833861247 – – – – 
3 1 3.200 0.11374032082270 101 0.250 0.500 0.750 0.500 
4 1 2.500 0.76580544237358 0.250 0.500 1.000 0.500 
5 1 8.000 0.42638000926819 10 2 0.000 0.500 2.000 0.500 
6 2 3.750 0.17673538204534 0.000 0.500 3.000 0.500 

Nitrogen–Ethanef

1 2 0.000 0.47376518126608 – – – – 
2 2 0.050 0.48961193461001 – – – – 
3 3 0.000 0.57011062090535 10 2 – – – – 
4 1 3.650 0.19966820041320 1.000 0.500 1.000 0.500 
5 2 4.900 0.69411103101723 1.000 0.500 1.000 0.500 
6 2 4.450 0.69226192739021 0.875 0.500 1.250 0.500 

Methane–Hydrogeng

1 1 2.000 0.25157134971934 – – – – 
2 3 1.000 0.62203841111983 10 2 – – – – 
3 3 1.750 0.88850315184396 10 1 – – – – 
4 4 1.400 0.35592212573239 10 1 – – – – 

Methane–n-Butane, Methane–Isobutane, Ethane–Propane, Ethane–n-Butane,
Ethane–Isobutane, Propane–n-Butane, Propane–Isobutane, and n-Butane–Isobutaneh

1 1 1.000 0.25574776844118 101 – – – – 
2 1 1.550 0.79846357136353 101 – – – – 
3 1 1.700 0.47859131465806 101 – – – – 
4 2 0.250 0.73265392369587 – – – – 
5 2 1.350 0.13805471345312 101 – – – – 
6 3 0.000 0.28349603476365 – – – – 
7 3 1.250 0.49087385940425 – – – – 
8 4 0.000 0.10291888921447 – – – – 
9 4 0.700 0.11836314681968 – – – – 

10 4 5.400 0.55527385721943 10 4 – – – – 
a KPol,ij = 2, KExp,ij = 7. 
b KPol,ij = 3, KExp,ij = 3. 
c KPol,ij = 2, KExp,ij = 10. 
d KPol,ij = 5, KExp,ij = 4. 
e KPol,ij = 2, KExp,ij = 4. 
f KPol,ij = 3, KExp,ij = 3. 
g KPol,ij = 4, KExp,ij = 0. 
h KPol,ij = 10, KExp,ij = 0. 
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Table A3.8 Binary parameters of the reducing functions for density and temperature, Eqs. (7.9) and 
(7.10)

Mixture i–j v ij, v ij, T ij, T ij,

CH4–N2 0.998721377 1.013950311 0.998098830 0.979273013 
CH4–CO2 0.999518072 1.002806594 1.022624490 0.975665369 
CH4–C2H6 0.997547866 1.006617867 0.996336508 1.049707697 
CH4–C3H8 1.004827070 1.038470657 0.989680305 1.098655531 
CH4–n-C4H10 0.979105972 1.045375122 0.994174910 1.171607691 
CH4–i-C4H10 1.011240388 1.054319053 0.980315756 1.161117729 
CH4–n-C5H12 0.948330120 1.124508039 0.992127525 1.249173968 
CH4–i-C5H12 1.000000000 1.343685343 1.000000000 1.188899743 
CH4–n-C6H14 0.958015294 1.052643846 0.981844797 1.330570181 
CH4–n-C7H16 0.962050831 1.156655935 0.977431529 1.379850328 
CH4–n-C8H18 0.994740603 1.116549372 0.957473785 1.449245409 
CH4–H2 1.000000000 1.018702573 1.000000000 1.352643115 
CH4–O2 1.000000000 1.000000000 1.000000000 0.950000000 
CH4–CO 0.997340772 1.006102927 0.987411732 0.987473033 
CH4–H2O 1.012783169 1.585018334 1.063333913 0.775810513 
CH4–He 1.000000000 0.881405683 1.000000000 3.159776855 
CH4–Ar 1.034630259 1.014678542 0.990954281 0.989843388 

N2–CO2 0.977794634 1.047578256 1.005894529 1.107654104 
N2–C2H6 0.978880168 1.042352891 1.007671428 1.098650964 
N2–C3H8 0.974424681 1.081025408 1.002677329 1.201264026 
N2–n-C4H10 0.996082610 1.146949309 0.994515234 1.304886838 
N2–i-C4H10 0.986415830 1.100576129 0.992868130 1.284462634 
N2–n-C5H12 1.000000000 1.078877166 1.000000000 1.419029041 
N2–i-C5H12 1.000000000 1.154135439 1.000000000 1.381770770 
N2–n-C6H14 1.000000000 1.195952177 1.000000000 1.472607971 
N2–n-C7H16 1.000000000 1.404554090 1.000000000 1.520975334 
N2–n-C8H18 1.000000000 1.186067025 1.000000000 1.733280051 
N2–H2 0.972532065 0.970115357 0.946134337 1.175696583 
N2–O2 0.999521770 0.997082328 0.997190589 0.995157044 
N2–CO 1.000000000 1.008690943 1.000000000 0.993425388 
N2–H2O 1.000000000 1.094749685 1.000000000 0.968808467 
N2–He 0.969501055 0.932629867 0.692868765 1.471831580 
N2–Ar 1.004166412 1.002212182 0.999069843 0.990034831 

CO2–C2H6 1.002525718 1.032876701 1.013871147 0.900949530 
CO2–C3H8 0.996898004 1.047596298 1.033620538 0.908772477 
CO2–n-C4H10 1.174760923 1.222437324 1.018171004 0.911498231 
CO2–i-C4H10 1.076551882 1.081909003 1.023339824 0.929982936 
CO2–n-C5H12 1.024311498 1.068406078 1.027000795 0.979217302 
CO2–i-C5H12 1.060793104 1.116793198 1.019180957 0.961218039 
CO2–n-C6H14 1.000000000 0.851343711 1.000000000 1.038675574 
CO2–n-C7H16 1.205469976 1.164585914 1.011806317 1.046169823 
CO2–n-C8H18 1.026169373 1.104043935 1.029690780 1.074455386 
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Table A3.8 (continued)

Mixture i–j v ij, v ij, T ij, T ij,

CO2–H2 0.904142159 1.152792550 0.942320195 1.782924792 
CO2–O2 1.000000000 1.000000000 1.000000000 1.000000000 
CO2–CO 1.000000000 1.000000000 1.000000000 1.000000000 
CO2–H2O 0.949055959 1.542328793 0.997372205 0.775453996 
CO2–He 0.846647561 0.864141549 0.768377630 3.207456948 
CO2–Ar 1.008392428 1.029205465 0.996512863 1.050971635 

C2H6–C3H8 0.997607277 1.003034720 0.996199694 1.014730190 
C2H6–n-C4H10 0.999157205 1.006179146 0.999130554 1.034832749 
C2H6–i-C4H10 1.000000000 1.006616886 1.000000000 1.033283811 
C2H6–n-C5H12 0.993851009 1.026085655 0.998688946 1.066665676 
C2H6–i-C5H12

a 1.000000000 1.045439246 1.000000000 1.021150247 
C2H6–n-C6H14 1.000000000 1.169701102 1.000000000 1.092177796 
C2H6–n-C7H16 1.000000000 1.057666085 1.000000000 1.134532014 
C2H6–n-C8H18 1.007469726 1.071917985 0.984068272 1.168636194 
C2H6–H2 0.925367171 1.106072040 0.932969831 1.902008495 
C2H6–O2 1.000000000 1.000000000 1.000000000 1.000000000 
C2H6–CO 1.000000000 1.201417898 1.000000000 1.069224728 
C2H6–H2O 1.000000000 1.000000000 1.000000000 1.000000000 
C2H6–He 1.000000000 1.000000000 1.000000000 1.000000000 
C2H6–Ar 1.000000000 1.000000000 1.000000000 1.000000000 

C3H8–n-C4H10 0.999795868 1.003264179 1.000310289 1.007392782 
C3H8–i-C4H10 0.999243146 1.001156119 0.998012298 1.005250774 
C3H8–n-C5H12 1.044919431 1.019921513 0.996484021 1.008344412 
C3H8–i-C5H12 1.040459289 0.999432118 0.994364425 1.003269500 
C3H8–n-C6H14 1.000000000 1.057872566 1.000000000 1.025657518 
C3H8–n-C7H16 1.000000000 1.079648053 1.000000000 1.050044169 
C3H8–n-C8H18 1.000000000 1.102764612 1.000000000 1.063694129 
C3H8–H2 1.000000000 1.074006110 1.000000000 2.308215191 
C3H8–O2 1.000000000 1.000000000 1.000000000 1.000000000 
C3H8–CO 1.000000000 1.108143673 1.000000000 1.197564208 
C3H8–H2O 1.000000000 1.011759763 1.000000000 0.600340961 
C3H8–He 1.000000000 1.000000000 1.000000000 1.000000000 
C3H8–Ar 1.000000000 1.000000000 1.000000000 1.000000000 

n-C4H10–i-C4H10 1.000880464 1.000414440 1.000077547 1.001432824 
n-C4H10–n-C5H12 1.000000000 1.018159650 1.000000000 1.002143640 
n-C4H10–i-C5H12

a 1.000000000 1.002728262 1.000000000 1.000792201 
n-C4H10–n-C6H14 1.000000000 1.034995284 1.000000000 1.009157060 
n-C4H10–n-C7H16 1.000000000 1.019174227 1.000000000 1.021283378 
n-C4H10–n-C8H18 1.000000000 1.046905515 1.000000000 1.033180106 
n-C4H10–H2 1.000000000 1.232939523 1.000000000 2.509259945 
n-C4H10–O2 1.000000000 1.000000000 1.000000000 1.000000000 
n-C4H10–COa 1.000000000 1.084740904 1.000000000 1.174055065 
n-C4H10–H2O 1.000000000 1.223638763 1.000000000 0.615512682 
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Table A3.8 (continued)

Mixture i–j v ij, v ij, T ij, T ij,

n-C4H10–He 1.000000000 1.000000000 1.000000000 1.000000000 
n-C4H10–Ar 1.000000000 1.214638734 1.000000000 1.245039498 

i-C4H10–n-C5H12
a 1.000000000 1.002779804 1.000000000 1.002495889 

i-C4H10–i-C5H12
a 1.000000000 1.002284197 1.000000000 1.001835788 

i-C4H10–n-C6H14
a 1.000000000 1.010493989 1.000000000 1.006018054 

i-C4H10–n-C7H16
a 1.000000000 1.021668316 1.000000000 1.009885760 

i-C4H10–n-C8H18
a 1.000000000 1.032807063 1.000000000 1.013945424 

i-C4H10–H2
a 1.000000000 1.147595688 1.000000000 1.895305393 

i-C4H10–O2 1.000000000 1.000000000 1.000000000 1.000000000 
i-C4H10–COa 1.000000000 1.087272232 1.000000000 1.161523504 
i-C4H10–H2O 1.000000000 1.000000000 1.000000000 1.000000000 
i-C4H10–He 1.000000000 1.000000000 1.000000000 1.000000000 
i-C4H10–Ar 1.000000000 1.000000000 1.000000000 1.000000000 

n-C5H12–i-C5H12
a 1.000000000 1.000024352 1.000000000 1.000050537 

n-C5H12–n-C6H14
a 1.000000000 1.002480637 1.000000000 1.000761237 

n-C5H12–n-C7H16
a 1.000000000 1.008972412 1.000000000 1.002441051 

n-C5H12–n-C8H18 1.000000000 1.069223964 1.000000000 1.016422347 
n-C5H12–H2

a 1.000000000 1.188334783 1.000000000 2.013859174 
n-C5H12–O2 1.000000000 1.000000000 1.000000000 1.000000000 
n-C5H12–COa 1.000000000 1.119954454 1.000000000 1.206195595 
n-C5H12–H2O 1.000000000 0.956677310 1.000000000 0.447666011 
n-C5H12–He 1.000000000 1.000000000 1.000000000 1.000000000 
n-C5H12–Ar 1.000000000 1.000000000 1.000000000 1.000000000 

i-C5H12–n-C6H14
a 1.000000000 1.002996055 1.000000000 1.001204174 

i-C5H12–n-C7H16
a 1.000000000 1.009928531 1.000000000 1.003194615 

i-C5H12–n-C8H18
a 1.000000000 1.017880981 1.000000000 1.005647480 

i-C5H12–H2
a 1.000000000 1.184339122 1.000000000 1.996386669 

i-C5H12–O2 1.000000000 1.000000000 1.000000000 1.000000000 
i-C5H12–COa 1.000000000 1.116693501 1.000000000 1.199475627 
i-C5H12–H2O 1.000000000 1.000000000 1.000000000 1.000000000 
i-C5H12–He 1.000000000 1.000000000 1.000000000 1.000000000 
i-C5H12–Ar 1.000000000 1.000000000 1.000000000 1.000000000 

n-C6H14–n-C7H16 1.000000000 1.001508227 1.000000000 0.999762786 
n-C6H14–n-C8H18

a 1.000000000 1.006268954 1.000000000 1.001633952 
n-C6H14–H2 1.000000000 1.243461678 1.000000000 3.021197546 
n-C6H14–O2 1.000000000 1.000000000 1.000000000 1.000000000 
n-C6H14–COa 1.000000000 1.155145836 1.000000000 1.233435828 
n-C6H14–H2O 1.000000000 1.170217596 1.000000000 0.569681333 
n-C6H14–He 1.000000000 1.000000000 1.000000000 1.000000000 
n-C6H14–Ar 1.000000000 1.000000000 1.000000000 1.000000000 

n-C7H16–n-C8H18 1.000000000 1.006767176 1.000000000 0.998793111 
n-C7H16–H2 1.000000000 1.159131722 1.000000000 3.169143057 



A3   Parameters and Coefficients of the New Equation of State (GERG-2004) 485 

Table A3.8 (continued)

Mixture i–j v ij, v ij, T ij, T ij,

n-C7H16–O2 1.000000000 1.000000000 1.000000000 1.000000000 
n-C7H16–COa 1.000000000 1.190354273 1.000000000 1.256295219 
n-C7H16–H2O 1.000000000 1.000000000 1.000000000 1.000000000 
n-C7H16–He 1.000000000 1.000000000 1.000000000 1.000000000 
n-C7H16–Ar 1.000000000 1.000000000 1.000000000 1.000000000 

n-C8H18–H2
a 1.000000000 1.305249405 1.000000000 2.191555216 

n-C8H18–O2 1.000000000 1.000000000 1.000000000 1.000000000 
n-C8H18–COa 1.000000000 1.219206702 1.000000000 1.276744779 
n-C8H18–H2O 1.000000000 0.599484191 1.000000000 0.662072469 
n-C8H18–He 1.000000000 1.000000000 1.000000000 1.000000000 
n-C8H18–Ar 1.000000000 1.000000000 1.000000000 1.000000000 

H2–O2 1.000000000 1.000000000 1.000000000 1.000000000 
H2–CO 1.000000000 1.121416201 1.000000000 1.377504607 
H2–H2O 1.000000000 1.000000000 1.000000000 1.000000000 
H2–He 1.000000000 1.000000000 1.000000000 1.000000000 
H2–Ar 1.000000000 1.000000000 1.000000000 1.000000000 

O2–CO 1.000000000 1.000000000 1.000000000 1.000000000 
O2–H2O 1.000000000 1.143174289 1.000000000 0.964767932 
O2–He 1.000000000 1.000000000 1.000000000 1.000000000 
O2–Ar 0.999746847 0.993907223 1.000023103 0.990430423 

CO–H2O 1.000000000 1.000000000 1.000000000 1.000000000 
CO–He 1.000000000 1.000000000 1.000000000 1.000000000 
CO–Ar 1.000000000 1.159720623 1.000000000 0.954215746 

H2O–He 1.000000000 1.000000000 1.000000000 1.000000000 
H2O–Ar 1.000000000 1.038993495 1.000000000 1.070941866 

He–Ar 1.000000000 1.000000000 1.000000000 1.000000000 
a The values for the binary parameters v ij,  and T ij,  were calculated from Eq. (5.17). 
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A4 Binary Parameters of the Alternative (Invariant) Equation of 
State

Table A4.1 Binary parameters of the invariant reducing functions for density and temperature, 
Eqs. (7.168) and (7.169) 

Mixture i–j v ij, v ij, T ij, T ij,

CH4–N2 0.002594526 1.013949718 0.003727066 0.979271745 
CH4–CO2 0.000966671 1.002806510 0.043644877 0.975490845 
CH4–C2H6 0.004945543 1.006615585 0.007705262 1.049702643 
CH4–C3H8 0.009989309 1.038461234 0.022792161 1.098613277 
CH4–n-C4H10 0.044459239 1.045192077 0.013689115 1.171593399 
CH4–i-C4H10 0.023473280 1.054266276 0.046158169 1.160953717 
CH4–n-C5H12 0.121726735 1.123234541 0.019745389 1.249146078 
CH4–i-C5H12 0.000000000 1.343685343 0.000000000 1.188899743 
CH4–n-C6H14 0.092044189 1.051822957 0.048749270 1.330410544 
CH4–n-C7H16 0.091214759 1.155906408 0.062979290 1.379593371 
CH4–n-C8H18 0.011809823 1.116535007 0.125840032 1.448267628 
CH4–H2 0.000000000 1.018702573 0.000000000 1.352643115 
CH4–O2 0.000000000 1.000000000 0.000000000 0.950000000 
CH4–CO 0.005357713 1.006100378 0.025016937 0.987416393 
CH4–H2O 0.040362480 1.584931196 0.095103361 0.774765793 
CH4–He 0.000000000 0.881405683 0.000000000 3.159776855 
CH4–Ar 0.069281501 1.014255587 0.017988429 0.989814175 

N2–CO2 0.047052295 1.047390254 0.013019637 1.107640428 
N2–C2H6 0.044659292 1.042179006 0.016791623 1.098628030 
N2–C3H8 0.056419804 1.080749284 0.006423740 1.201260956 
N2–n-C4H10 0.009016489 1.146941940 0.014353178 1.304872730 
N2–i-C4H10 0.030260917 1.100493547 0.018386412 1.284439115 
N2–n-C5H12 0.000000000 1.078877166 0.000000000 1.419029041 
N2–i-C5H12 0.000000000 1.154135439 0.000000000 1.381770770 
N2–n-C6H14 0.000000000 1.195952177 0.000000000 1.472607971 
N2–n-C7H16 0.000000000 1.404554090 0.000000000 1.520975334 
N2–n-C8H18 0.000000000 1.186067025 0.000000000 1.733280051 
N2–H2 0.053847812 0.969841575 0.129997862 1.174409194 
N2–O2 0.000953457 0.997082236 0.005599457 0.995154228 
N2–CO 0.000000000 1.008690943 0.000000000 0.993425388 
N2–H2O 0.000000000 1.094749685 0.000000000 0.968808467 
N2–He 0.057439409 0.932297970 1.010004338 1.403319851 
N2–Ar 0.008336546 1.002205958 0.001842632 0.990034524 

CO2–C2H6 0.005209770 1.032874073 0.024820275 0.900888422 
CO2–C3H8 0.006516778 1.047592243 0.060069051 0.908417393 
CO2–n-C4H10 0.365402991 1.209976841 0.032822959 0.911392590 
CO2–i-C4H10 0.154764261 1.079557865 0.042900937 0.929806023 
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Table A4.1 (continued)

Mixture i–j v ij, v ij, T ij, T ij,

CO2–n-C5H12 0.050778398 1.068150222 0.052159382 0.978968906 
CO2–i-C5H12 0.128265988 1.115192821 0.036518354 0.961094032 
CO2–n-C6H14 0.000000000 0.851343711 0.000000000 1.038675574 
CO2–n-C7H16 0.385284587 1.146531907 0.024556438 1.046118312 
CO2–n-C8H18 0.056179059 1.103706144 0.062846951 1.074126696 
CO2–H2 0.227828534 1.148623699 0.211472229 1.780677507 
CO2–O2 0.000000000 1.000000000 0.000000000 1.000000000 
CO2–CO 0.000000000 1.000000000 0.000000000 1.000000000 
CO2–H2O 0.159454088 1.540880838 0.004080818 0.775452077 
CO2–He 0.273822949 0.855102255 1.632463749 3.129231265 
CO2–Ar 0.017215571 1.029179200 0.007342529 1.050967051 

C2H6–C3H8 0.004807651 1.003032612 0.007727206 1.014724932 
C2H6–n-C4H10 0.001698081 1.006178799 0.001800244 1.034832469 
C2H6–i-C4H10 0.000000000 1.006616886 0.000000000 1.033283811 
C2H6–n-C5H12 0.012681586 1.026070161 0.002798745 1.066665020 
C2H6–i-C5H12

a 0.000000000 1.045439246 0.000000000 1.021150247 
C2H6–n-C6H14 0.000000000 1.169701102 0.000000000 1.092177796 
C2H6–n-C7H16 0.000000000 1.057666085 0.000000000 1.134532014 
C2H6–n-C8H18 0.015901818 1.071893345 0.037531734 1.168528466 
C2H6–H2 0.167154232 1.103539451 0.263294196 1.898739787 
C2H6–O2 0.000000000 1.000000000 0.000000000 1.000000000 
C2H6–CO 0.000000000 1.201417898 0.000000000 1.069224728 
C2H6–H2O 0.000000000 1.000000000 0.000000000 1.000000000 
C2H6–He 0.000000000 1.000000000 0.000000000 1.000000000 
C2H6–Ar 0.000000000 1.000000000 0.000000000 1.000000000 

C3H8–n-C4H10 0.000410213 1.003264139 0.000625069 1.007392747 
C3H8–i-C4H10 0.001516514 1.001155901 0.004000247 1.005249352 
C3H8–n-C5H12 0.088866176 1.019200323 0.007103086 1.008339941 
C3H8–i-C5H12 0.078696960 0.998855703 0.011339803 1.003258047 
C3H8–n-C6H14 0.000000000 1.057872566 0.000000000 1.025657518 
C3H8–n-C7H16 0.000000000 1.079648053 0.000000000 1.050044169 
C3H8–n-C8H18 0.000000000 1.102764612 0.000000000 1.063694129 
C3H8–H2 0.000000000 1.074006110 0.000000000 2.308215191 
C3H8–O2 0.000000000 1.000000000 0.000000000 1.000000000 
C3H8–CO 0.000000000 1.108143673 0.000000000 1.197564208 
C3H8–H2O 0.000000000 1.011759763 0.000000000 0.600340961 
C3H8–He 0.000000000 1.000000000 0.000000000 1.000000000 
C3H8–Ar 0.000000000 1.000000000 0.000000000 1.000000000 

n-C4H10–i-C4H10 0.001760806 1.000413785 0.000155310 1.001432822 
n-C4H10–n-C5H12 0.000000000 1.018159650 0.000000000 1.002143640 
n-C4H10–i-C5H12

a 0.000000000 1.002728262 0.000000000 1.000792201 
n-C4H10–n-C6H14 0.000000000 1.034995284 0.000000000 1.009157060 
n-C4H10–n-C7H16 0.000000000 1.019174227 0.000000000 1.021283378 
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Table A4.1 (continued)

Mixture i–j v ij, v ij, T ij, T ij,

n-C4H10–n-C8H18 0.000000000 1.046905515 0.000000000 1.033180106 
n-C4H10–H2 0.000000000 1.232939523 0.000000000 2.509259945 
n-C4H10–O2 0.000000000 1.000000000 0.000000000 1.000000000 
n-C4H10–COa 0.000000000 1.084740904 0.000000000 1.174055065 
n-C4H10–H2O 0.000000000 1.223638763 0.000000000 0.615512682 
n-C4H10–He 0.000000000 1.000000000 0.000000000 1.000000000 
n-C4H10–Ar 0.000000000 1.214638734 0.000000000 1.245039498 

i-C4H10–n-C5H12
a 0.000000000 1.002779804 0.000000000 1.002495889 

i-C4H10–i-C5H12
a 0.000000000 1.002284197 0.000000000 1.001835788 

i-C4H10–n-C6H14
a 0.000000000 1.010493989 0.000000000 1.006018054 

i-C4H10–n-C7H16
a 0.000000000 1.021668316 0.000000000 1.009885760 

i-C4H10–n-C8H18
a 0.000000000 1.032807063 0.000000000 1.013945424 

i-C4H10–H2
a 0.000000000 1.147595688 0.000000000 1.895305393 

i-C4H10–O2 0.000000000 1.000000000 0.000000000 1.000000000 
i-C4H10–COa 0.000000000 1.087272232 0.000000000 1.161523504 
i-C4H10–H2O 0.000000000 1.000000000 0.000000000 1.000000000 
i-C4H10–He 0.000000000 1.000000000 0.000000000 1.000000000 
i-C4H10–Ar 0.000000000 1.000000000 0.000000000 1.000000000 

n-C5H12–i-C5H12
a 0.000000000 1.000024352 0.000000000 1.000050537 

n-C5H12–n-C6H14
a 0.000000000 1.002480637 0.000000000 1.000761237 

n-C5H12–n-C7H16
a 0.000000000 1.008972412 0.000000000 1.002441051 

n-C5H12–n-C8H18 0.000000000 1.069223964 0.000000000 1.016422347 
n-C5H12–H2

a 0.000000000 1.188334783 0.000000000 2.013859174 
n-C5H12–O2 0.000000000 1.000000000 0.000000000 1.000000000 
n-C5H12–COa 0.000000000 1.119954454 0.000000000 1.206195595 
n-C5H12–H2O 0.000000000 0.956677310 0.000000000 0.447666011 
n-C5H12–He 0.000000000 1.000000000 0.000000000 1.000000000 
n-C5H12–Ar 0.000000000 1.000000000 0.000000000 1.000000000 

i-C5H12–n-C6H14
a 0.000000000 1.002996055 0.000000000 1.001204174 

i-C5H12–n-C7H16
a 0.000000000 1.009928531 0.000000000 1.003194615 

i-C5H12–n-C8H18
a 0.000000000 1.017880981 0.000000000 1.005647480 

i-C5H12–H2
a 0.000000000 1.184339122 0.000000000 1.996386669 

i-C5H12–O2 0.000000000 1.000000000 0.000000000 1.000000000 
i-C5H12–COa 0.000000000 1.116693501 0.000000000 1.199475627 
i-C5H12–H2O 0.000000000 1.000000000 0.000000000 1.000000000 
i-C5H12–He 0.000000000 1.000000000 0.000000000 1.000000000 
i-C5H12–Ar 0.000000000 1.000000000 0.000000000 1.000000000 

n-C6H14–n-C7H16 0.000000000 1.001508227 0.000000000 0.999762786 
n-C6H14–n-C8H18

a 0.000000000 1.006268954 0.000000000 1.001633952 
n-C6H14–H2 0.000000000 1.243461678 0.000000000 3.021197546 
n-C6H14–O2 0.000000000 1.000000000 0.000000000 1.000000000 
n-C6H14–COa 0.000000000 1.155145836 0.000000000 1.233435828 
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Table A4.1 (continued)

Mixture i–j v ij, v ij, T ij, T ij,

n-C6H14–H2O 0.000000000 1.170217596 0.000000000 0.569681333 
n-C6H14–He 0.000000000 1.000000000 0.000000000 1.000000000 
n-C6H14–Ar 0.000000000 1.000000000 0.000000000 1.000000000 

n-C7H16–n-C8H18 0.000000000 1.006767176 0.000000000 0.998793111 
n-C7H16–H2 0.000000000 1.159131722 0.000000000 3.169143057 
n-C7H16–O2 0.000000000 1.000000000 0.000000000 1.000000000 
n-C7H16–COa 0.000000000 1.190354273 0.000000000 1.256295219 
n-C7H16–H2O 0.000000000 1.000000000 0.000000000 1.000000000 
n-C7H16–He 0.000000000 1.000000000 0.000000000 1.000000000 
n-C7H16–Ar 0.000000000 1.000000000 0.000000000 1.000000000 

n-C8H18–H2
a 0.000000000 1.305249405 0.000000000 2.191555216 

n-C8H18–O2 0.000000000 1.000000000 0.000000000 1.000000000 
n-C8H18–COa 0.000000000 1.219206702 0.000000000 1.276744779 
n-C8H18–H2O 0.000000000 0.599484191 0.000000000 0.662072469 
n-C8H18–He 0.000000000 1.000000000 0.000000000 1.000000000 
n-C8H18–Ar 0.000000000 1.000000000 0.000000000 1.000000000 

H2–O2 0.000000000 1.000000000 0.000000000 1.000000000 
H2–CO 0.000000000 1.121416201 0.000000000 1.377504607 
H2–H2O 0.000000000 1.000000000 0.000000000 1.000000000 
H2–He 0.000000000 1.000000000 0.000000000 1.000000000 
H2–Ar 0.000000000 1.000000000 0.000000000 1.000000000 

O2–CO 0.000000000 1.000000000 0.000000000 1.000000000 
O2–H2O 0.000000000 1.143174289 0.000000000 0.964767932 
O2–He 0.000000000 1.000000000 0.000000000 1.000000000 
O2–Ar 0.000503368 0.993907199 0.000045763 0.990430423 

CO–H2O 0.000000000 1.000000000 0.000000000 1.000000000 
CO–He 0.000000000 1.000000000 0.000000000 1.000000000 
CO–Ar 0.000000000 1.159720623 0.000000000 0.954215746 

H2O–He 0.000000000 1.000000000 0.000000000 1.000000000 
H2O–Ar 0.000000000 1.038993495 0.000000000 1.070941866 

He–Ar 0.000000000 1.000000000 0.000000000 1.000000000 
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